
LINUXPAK

(Do original UPAK, de Bill Milner)

ADAC – 2

CHIL - 10

SCAN - 43

LEMO - 52

DAMM - 72

 ADAC - DATA ACQUISITION WITH THE EVENT-HANDLER

 SECTION CONTENTS

 010 HOW TO ASSEMBLE A PROGRAM
 020 GENERAL FEATURES OF THE SYSTEM
 025 READOUT & CONTROL OF UP TO 4 CRATES WITH ONE EVENT HANDLER
 030 BASIC INSTRUCTION LIST AND DEFINITIONS
 040 MACRO INSTRUCTION LIST AND DEFINITIONS
 050 DIRECTIVES TO THE ASSEMBLER ("EQUATE", LOOP, ENDLOOP)
 060 ASSEMBLY-TIME VARIABLES
 065 STATEMENT LABELS
 070 EXPRESSIONS
 080 SYNTAX RULES
 090 PROGRAMMING EXAMPLES
 110 HOW TO SCREW UP WITHOUT REALLY TRYING
 120 INSTRUCTION SET (BIT-PATTERN)

 250.030 BASIC INSTRUCTION LIST AND DEFINITIONS

 INSTRUCTION ;MEANING OR DESCRIPTION
 NOP ;NO-OP
 SETB ;SET BUSY - front panel output
 CLRB ;CLR BUSY - front panel output

 NAF N,A,F ;Do NAF - data to or from CA1 implied
 NAF (P),N,A,F ;Do NAF - (proceed)
 NAF (S),N,A,F ;Do NAF - (short CAMAC cycle - No S2)
 NAF (N),N,A,F ;Do NAF - (shorter CAMAC cycle - No S1 or S2)
 NAF (PS),N,A,F ;Do NAF - (short CAMAC cycle & proceed)
 NAF (PN),N,A,F ;Do NAF - (shorter CAMAC cycle & proceed)

 MOV CAX,PAT ;MOV contents of CAX to Pattern Reg (PAT)
 MOV PAT,CAX ;MOV contents of PAT to CAX (16 bits)
 MOV CAX,TXR ;MOV contents of CAX to Transfer Reg (TXR)
 MOV UCAX,CAX ;MOV HI 8-bits to LO 8-bits (zero bits 9 - 16)
 MOV #,TXR ;MOV # to TXR (16 bits)
 MOV #,CAX ;MOV # to CAX (16 bits)

 OUT CAX ;Output CAX (MOV to TXR & XMIT to FIFO)(24 bits)
 OUT # ;Output # (MOV to TXR & XMIT to FIFO)(16 bits)
 OUT UCAX ;MOV HI 8-bits to LO 8-bits of TXR & XMIT; (HI 8-bits of TXR set to
zero)
 OUT PAT ;MOV LO 16-bits of PAT to TXR & XMIT
 OUT SPEC ;Special OUT - not yet supported.

 MERG # ;MOV bits 13-16 of # to bits 13-16 of TXR & XMIT; (bits 1-12
unchanged)

 INCX ;Increment CAMAC register CAX
 DECX ;Decrement CAMAC register CAX

 SPLX ;"Split" CAMAC register CAX
 STOX AD ;Store CAX in AUX memory at address AD
 RECX AD ;Recall AUX memory location AD & store in CAX
 --
 CAX denotes CA (implies CA1), CA1, CA2, CA3 or CA4
 INCX denotes INC (implies INC1), INC1, INC2, INC3 or INC4
 DECX denotes DEC (implies DEC1), DEC1, DEC2, DEC3 or DEC4
 SPLX denotes SPL (implies SPL1), SPL1, SPL2, SPL3 or SPL4

 250.030 BASIC INSTRUCTION LIST (CONTINUED)

 SKIP EXX.ANY.# ;Skip next INS if any set bits in EXX & # match
 SKIP CAX.ANY.# ;Skip next INS if any set bits in CAX & # match
 SKIP PAT.ANY.# ;Skip next INS if any set bits in PAT & # match
 SKIP UPAT.ANY.# ;Skip next INS if any set bits in UPAT & # match

 SKIP EXX.NONE.# ;Skip next INS if no set bits in EXX & # match
 SKIP CAX.NONE.# ;Skip next INS if no set bits in CAX & # match
 SKIP PAT.NONE.# ;Skip next INS if no set bits in PAT & # match
 SKIP UPAT.NONE.# ;Skip next INS if no set bits in UPAT & # match

 SKIP CAX.LT.# ;Skip next INS if contents of CAX < # (16 bits)
 SKIP PAT.LT.# ;Skip next INS if contents of PAT < # (16 bits)
 SKIP CAX.GT.# ;Skip next INS if contents of CAX > # (16 bits)
 SKIP PAT.GT.# ;Skip next INS if contents of PAT > # (16 bits)

 BRU NAME ;Branch to Destination NAME

 SPB DEST ;SPB = STORE POSITION and BRANCH - Similar to
 ;CALL in Fortran. DEST same form as for BRU.

 BRUR ;Return from subroutine

 DLAY # ;Wait for #*(0.1 micro-sec) up to 409.6 micro-sec

 --
 EXX denotes EX (implies EX1), EX1, EX2, EX3 or EX4
 --

 250.040 MACRO INSTRUCTION LIST AND DEFINITIONS

 IF(EXX.ANY.#)ADDR ;If set bits in EXX match any in #, GO TO ADDR
 IF(CAX.ANY.#)ADDR ;If set bits in CAX match any in #, GO TO ADDR
 IF(PAT.ANY.#)ADDR ;If set bits in PAT match any in #, GO TO ADDR
 IF(UPAT.ANY.#)ADDR ;If set bits in UPAT match any in #, GO TO ADDR

 IF(EXX.NONE.#)ADDR ;If set bits in EXX match none in #, GO TO ADDR
 IF(CAX.NONE.#)ADDR ;If set bits in CAX match none in #, GO TO ADDR
 IF(PAT.NONE.#)ADDR ;If set bits in PAT match none in #, GO TO ADDR
 IF(UPAT.NONE.#)ADDR ;If set bits in UPAT match none in #, GO TO ADDR

 IF(CAX.LT.#)ADDR ;If contents of CAX < # (16 bits) GO TO ADDR
 IF(PAT.LT.#)ADDR ;If contents of PAT < # (16 bits) GO TO ADDR

 IF(CAX.GT.#)ADDR ;If contents of CAX > # (16 bits) GO TO ADDR

 IF(PAT.GT.#)ADDR ;If contents of PAT > # (16 bits) GO TO ADDR

 SPAT N,A,F ;Read 24-bit WD and save in Pattern Reg (PAT)
 CSPAT C,N,A,F ;Read 24-bit WD and save in Pattern Reg (PAT)

 ROUT N,A,F ;Read data and XMIT to FIFO
 CROUT C,N,A,F ;Read data and XMIT to FIFO

 RSTO N,A,F,AD ;Read into CA1 & store LO-16 in AUX memory at AD
 CRSTO C,N,A,F,AD ;Read into CAC & store LO-16 in AUX memory at AD
 INCX AD ;Increment AUX memory AD using CAMAC reg CAX
 DECX AD ;Decrement AUX memory AD using CAMAC reg CAX
 --
 EXX denotes EX (implies EX1), EX1, EX2, EX3 or EX4
 CAX denotes CA (implies CA1), CA1, CA2, CA3 or CA4
 INCX denotes INC (implies INC1), INC1, INC2, INC3 or INC4
 DECX denotes DEC (implies DEC1), DEC1, DEC2, DEC3 or DEC4

 All NAF & CNAF generating instructions support an optional first-field
 (S), (P), (N), (PS), or (PN). (See first page of SEC# 250.030)

 All NAF & CNAF generating instructions support an optional last-field
 T which denotes a Totalizer Module register no. (T = 0,1,2,3)
 --

 250.040 MACRO INSTRUCTION LIST (EXPANSIONS)

 Each macro-instruction generates two or more basic instructions as
 indicated below.

 MACRO-INSTRUCTION BASIC INSTRUCTIONS GENERATED BY ASSEMBLER
 ----------------- ---
 SPAT N,A,F NAF N,A,F
 MOV CA1,PAT

 CSPAT C,N,A,F CNAF C,N,A,F (C must be 1,2,3 or 4)
 MOV CAX,PAT (CAX=CA1,CA2,CA3 or CA4)

 ROUT N,A,F NAF N,A,F
 OUT CA1

 CROUT C,N,A,F CNAF C,N,A,F (C must be 1,2,3 or 4)
 OUT CAX (CAX=CA1,CA2,CA3 or CA4)

 RSTO N,A,F,AD NAF N,A,F
 STO AD

 CRSTO C,N,A,F,AD CNAF C,N,A,F (C must be 1,2,3 or 4)
 STOX AD (STOX=STO1,STO2,STO3 or STO4)

 INCX AD RECX AD (uses CAMAC reg CAX)
 INCX (incremented value in CAX)
 STOX AD

 DECX AD RECX AD (uses CAMAC reg CAX)

 DECX (decremented value in CAX)
 STOX AD

 IF(REG.OP.MSK)ADDR SKIP REG.IOP.MSK (for OP = ANY ,NONE)
 BRU ADDR (IOP= NONE,ANY)

 IF(REG.LT.VAL)ADDR SKIP REG.GT.VAL-1 (REG=CA1,CA2,CA3,CA4 or PAT)
 BRU ADDR

 IF(REG.GT.VAL)ADDR SKIP REG.LT.VAL+1 (REG=CA1,CA2,CA3,CA4 or PAT)
 BRU ADDR
 --
 INCX denotes INC (implies INC1), INC1, INC2, INC3 or INC4
 DECX denotes DEC (implies DEC1), DEC1, DEC2, DEC3 or DEC4

 All NAF & CNAF generating instructions support an optional first-field
 (S), (P), (N), (PS), or (PN). (See first page of SEC# 250.030)

 250.050 DIRECTIVES TO THE ASSEMBLER ("EQUATE", LOOP, ENDLOOP)

 SYM=EXPRESSION Directs assembler to evaluate EXPRESSION
 and assign the resulting value to SYM.

 LABL LOOP NLOOP Directs the assembler to "replicate" the set
 of statements bounded by the LOOP- and
 ENDLOOP-directives. Do it NLOOP times.

 ENDL ENDLOOP Defines End-of-Loop.

 250.060 ASSEMBLY-TIME VARIABLES

 Symbols defined by the "Equate Directive" (SYM=EXPRESSION) are called
 assembly time variables or just assembly variables. Such variables
 may be re-defined without restriction. Note: These are not run-time
 variables! - THERE ARE NO RUN-TIME VARIABLES! Assembly variables must
 always be defined in terms of numbers and/or previously defined
 assembly variables. Defining expressions may include "Bit-Lists".

 250.065 STATEMENT LABELS

 The label on the ENDLOOP directive as well as any other labels
 Defined between the LOOP and ENDLOOP directives are undefined outside
 of the loop and may be used in other loops. All other statement
 labels, including those on the LOOP directive Are defined to all
 parts of the program and, therefore, must be unique.

 * * * * LABELING OF THE "EQUATE" DIRECTIVE IS NOT ALLOWED * * * *

 250.070 EXPRESSIONS

 The assembler supports simple expressions which are evaluated left to
 right. REPEAT!! EVALUATED! LEFT! TO! RIGHT! Let "V" represent a
 single value (number or previously defined symbol). Let "S" represent
 an algebraic sum of "V's". Expressions of the following type are
 legal:

 A=V
 A=S
 A=S*V+S Means: A=(S)*V+S
 A=S/V+S Means: A=(S)/V+S
 A=S/V*V+S Means: A=((S)/V)*V+S
 A=MOD(S,S) No additional terms allowed
 (same argument definition as in fortran)
 A=S+[S,S,..] Where [] encloses a list of "bits"

 NUMERICAL EXAMPLES:

 ASSIGNMENT RESULT

 A=10 A=10
 B=A+4 B=14
 C=A+B-9 C=15
 D=100/B D=7
 E=A+B+C/6 E=6
 F=A+B-C*7 F=63
 G=A+B-C/6*A G=10
 H=A+B-C/6*A+C+10 H=35
 I=MOD(A+B,7) I=3
 J=MOD(A+B,E-1) J=4
 K=[A+6,3] K=8004 (HEX)
 L=[A+6,3]+40H L=8044 (HEX)
 M=[2,1] M=3
 N=[A+6,M] N=8004 (HEX)

 * * * PARENTHESES ARE NOT ALLOWED EXCEPT IN THE "MOD STATEMENT" * * *

 250.080 SYNTAX RULES

 (1)....All statement labels must start in col-1 and be no greater than
 8 characters in length.

 (2)....All instructions (Basic and Macro) must start after col-1. At
 least one blank must separate any statement label and the
 instruction field.

 (3)....At least one blank must separate the instruction and operand
 fields.

 (4)....Imbedded blanks are allowed in (but removed from) the IF-MACRO,
 expressions and operand fields of all types. I.e. you can type
 it any way you wish but I will re-format it to be the way I
 like it.

 (5)....The symbol being defined by an EQUATE may start in any column
 and be up to 8 characters in length.

 (6)....All comment fields must be preceded by a semicolon.

 (7)....A completely blank line will show up as a blank line in the
 assembly listing and otherwise be ignored.

 (8)....All numbers are decimal by default.

 (9)....Hex numbers are specified by a trailing "H" (8000H for example)
 The first character must be a decimal integer (0 to 9)

 (10)..."Bit Expressions" are lists of bit-numbers enclosed in [].
 Example: [16,1,2] produces 8003H.

 (11)...Bit-Lists are not allowed in elements of a N,A,F or C,N,A,F

 (12)...Expressions enclosed by < > within a comment-field are
 evaluated and replaced by a 3-digit decimal integer in the
 assembly listing. this is for labeling purposes only: any
 errors will be ignored.

 * * * EXPRESSIONS INCLOSED BY < > MAY CONTAIN NO IMBEDDED BLANKS * * *

 250.090 PROGRAMMING EXAMPLES

 Loops are initiated by the LOOP directive and terminated by the
 ENDLOOP (equivalent to CONTINUE in fortran). An example is shown
 below:

 SPAT 1,1,0 ;READ & STORE PATTERN REGISTER
 B=0 ;INIT PATTERN REG BIT COUNTER
 AA=-1 ;INIT ADC SUB-ADDR CNTR
 AT=-1 ;INIT TDC SUB-ADDR CNTR
 DET=0 ;INIT DETECTOR COUNTER
 ID=-2 ;INIT PARM ID #

 NADC=10 ;SLOT FOR ADC (ADC IN 10 & 11)
 NTDC1=12 ;SLOT FOR TDC1 (TDC1 IN 12 & 13)
 NTDC2=7 ;SLOT FOR TDC2 (TDC2 IN 7 & 9)
 DSA=1 ;SLOT INC FOR ADC
 DST1=1 ;SLOT INC FOR TDC1
 DST2=2 ;SLOT INC FOR TDC2
 CA=-1 ;CNTR FOR ADC SLOT SWITCHING
 CT1=-1 ;CNTR FOR TDC1 SLOT SWITCHING
 CT2=-1 ;CNTR FOR TDC2 SLOT SWITCHING

 LU1 LOOP 16
 B=B+1
 AA=MOD(AA+1,12)
 AT=MOD(AT+1,8)
 DET=DET+1
 ID=ID+3
 CA=CA+1
 CT1=CT1+1
 CT2=CT2+1
 NA=CA/12*DSA+NADC
 NT1=CT1/8*DST1+NTDC1
 NT2=CT2/8*DST2+NTDC2
 IF(PAT.NONE.[B])LEND ;TEST PATTERN REG BIT
 OUT 8000H+ID ;OUTPUT PARAMETER ID <ID>
 ROUT NA,AA,0 ;N,A = <NA>,<AA>
 ROUT NT1,AT,0 ;N,A = <NT1>,<AT>

 ROUT NT2,AT,0 ;N,A = <NT2>,<AT>
 LEND ENDLOOP ;END OF LOOP

 * * * * NESTED LOOPS ARE NOT SUPPORTED * * * *

 250.090 PROGRAMMING EXAMPLES (continued)

 TITLE LINE MUST BE PRESENT
 CSYS=2 ;SYSTEM (BRANCH) CRATE-#
 CAUX=08 ;CRATE-# CONTAINING EVENT HANDLER
 NFIF=18 ;SLOT-# FOR FIFO
 RECL=8192 ;MAG TAPE RECORD LENGTH (BYTES)
 NPAR=34 ;# OF PARAMETERS (FOR YOUR INFO ONLY)
 NAUX=22 ;SLOT-# FOR EVENT-HANDLER AUX
 NSUC=19 ;SLOT-# FOR SUCK-CONTROLLER
 BPI=800 ;TAPE DENSITY (BITS PER INCH)
 FORM=L002 ;L002 FORMAT (FOR INFO ONLY)
 COM$
 EXAMPLE EVENT-HANDLER PROGRAM
 PGM$

 S=12 ;STOP BIT = 12
 W=11 ;WAIT BIT = 11
 E=10 ;EVENT BIT = 10
 M=1 ;MASTER BIT IN GATED LATCH
 NAD1=5 ;ADC1 IN SLOT 5
 NLAT=2 ;GATED LATCH IN SLOT 2
 SETB ;SET BUSY TO INIT CAMAC
 INIT IF(EX.ANY.[S,W])INIT ;WAIT FOR EXT HANGUPS TO END
 CLR NAF NAD1,12,11 ;CLEAR ADC
 NAF NLAT,0,9 ;CLEAR LATCH
 WAIT IF(EX.ANY.[S,W])WAIT ;WAIT FOR EXT STOPS AND WAIT STATES
 CLRB ; * GO *
 IDLE IF(EX.NONE.[S,W,E])IDLE ;LOOP UNTIL SOMETHING HAPPENS
 IF(EX.ANY.[S,W])STOP ;STOP OR WAIT
 IF(EX.NONE.[E])IDLE ;? - WELL , GO BACK AND TRY AGAIN
 SETB ;PREPARE TO READ OUT
 DLAY 1000 ;WAIT FOR CONVERSIONS
 SPAT NLAT,0,0 ;GET GATED LATCH SIGNAL
 IF(PAT.NONE.[M])CLR ;IF MASTER COUNTER DID NOT FIRE,IGNORE
 OUT 8001H ;EVENT HEADER
 OUT CA ;LATCH TO FIFO
 A=-1 ;SET UP ADC READ LOOP
 LOOP 8
 A=A+1 ;INC ADDRESS
 ROUT NAD1,A,0 ;ADC TO FIFO
 ENDLOOP
 OUT 0FFFFH ;END OF EVENT
 BRU CLR ;GO AND RESET ADCS ETC
 STOP SETB ;STOP - SET BUSY
 BRU WAIT ;AND GO INTO WAIT STATE
 END

 250.120 BASIC INSTRUCTION LIST (BIT PATTERN)

 !2222!2111!1111!1110!0000!0000!

 !4321!0987!6543!2109!8765!4321! HEX REPRESENTATION
 ------------------!----!----!----!----!----!----!---------------------
 NOP !0000!0000! ! ! ! ! 0
 ! ! ! ! ! ! !
 NAF N,A,F<,T> !0001!00TT!00NN!NNNA!AAAF!FFFF! 100000+N,A,F,T
 ! ! ! ! ! ! !
 NAF (P)N,A,F<,T> !0001!10TT!00NN!NNNA!AAAF!FFFF! 180000+N,A,F,T
 ! ! ! ! ! ! !
 NAF (S)N,A,F<,T> !0001!00TT!01NN!NNNA!AAAF!FFFF! 104000+N,A,F,T
 ! ! ! ! ! ! !
 NAF (N)N,A,F<,T> !0001!00TT!10NN!NNNA!AAAF!FFFF! 108000+N,A,F,T
 ! ! ! ! ! ! !
 NAF (PS)N,A,F<,T> !0001!10TT!01NN!NNNA!AAAF!FFFF! 184000+N,A,F,T
 ! ! ! ! ! ! !
 NAF (PN)N,A,F<,T> !0001!10TT!10NN!NNNA!AAAF!FFFF! 188000+N,A,F,T
 ! ! ! ! ! ! !
 BRU A !0010!0101!0 !0AAA!AAAA!AAAA! 250000+A
 ! ! ! ! ! ! !
 BRUR !0010!0000!0 ! ! ! ! 200000
 ! ! ! ! ! ! !
 SPB A !0010!1101!0 !0AAA!AAAA!AAAA! 2D0000+A
 ! ! ! ! ! ! !
 SPBR !0010!1000!0 ! ! ! ! 280000
 ! ! ! ! ! ! !
 INTE A !0010!1111!0 !0AAA!AAAA!AAAA! 2F0000+A
 ! ! ! ! ! ! !
 INTR !0010!1010! ! ! ! ! 2A0000
 ! ! ! ! ! ! !
 SKIP PAT.ANY.# !0011!0000!####!####!####!####! 300000+#
 ! ! ! ! ! ! !
 SKIP UPAT.ANY.# !0011!0001!0000!0000!####!####! 310000+#
 ! ! ! ! ! ! !
 SKIP EXX.ANY.# !0011!0010!####!####!####!####! 320000+#
 ! ! ! ! ! ! !
 SKIP CAX.ANY.# !0011!0011!####!####!####!####! 330000+#
 ! ! ! ! ! ! !
 SKIP PAT.NONE.# !0011!0100!####!####!####!####! 340000+#
 ! ! ! ! ! ! !
 SKIP UPAT.NONE.# !0011!0101!0000!0000!####!####! 350000+#
 ! ! ! ! ! ! !
 SKIP EXX.NONE.# !0011!0110!####!####!####!####! 360000+#
 ! ! ! ! ! ! !
 SKIP CAX.NONE.# !0011!0111!####!####!####!####! 370000+#
 ! ! ! ! ! ! !
 SKIP CAX.LT.# !0011!1011!####!####!####!####! 3B0000+#
 ! ! ! ! ! ! !
 SKIP CAX.GT.# !0011!1111!####!####!####!####! 3F0000+#
 ! ! ! ! ! ! !
 SKIP PAT.LT.# !0011!1000!####!####!####!####! 380000+#
 ! ! ! ! ! ! !
 SKIP PAT.GT.# !0011!1100!####!####!####!####! 3C0000+#
 --
 The optional T-field in NAF & CNAF is supported by NEW-DEAL AUX only

 Comprehensive HIstogramming Language - CHIL

 SECTION CONTENTS

 010 HOW TO COMPILE A CHIL PROGRAM
 020 INTRODUCTION
 030 CHIL SYNTAX - LIST
 040 CHIL SYNTAX - GENERAL RULES
 050 PARAMETER LENGTHS
 060 PARAMETER NAMES
 070 GATES - SIMPLE (LO-LIMIT, HI-LIMIT PAIRS)
 080 GATES - SIMPLE (MAPPED)
 090 GATES - FREE-FORM (BANANAS)
 100 IF-STATEMENTS AND COMPUTED GO TO'S
 110 BIT-TESTS
 120 HISTOGRAM - BITS/CHANNEL
 130 HISTOGRAM - ID NUMBERS
 140 HISTOGRAM - TITLES
 150 HISTOGRAM - STATEMENTS
 160 LOOPS
 170 SYMBOLS & EXPRESSIONS
 180 PRE-SCANNING - CONSIDERATIONS
 190 USER-SUPPLIED SUBROUTINES
 200 HOW TO CREATE CUSTOMIZED CHIL-BASED TASKS
 210 DIRECTORY FILE - STRUCTURE
 220 EXAMPLES
 230 COMMENTS AND WARNINGS

 320.010 HOW TO COMPILE A CHIL PROGRAM

 TO COMPILE A CHIL PROGRAM ON THE CONCURRENT SYSTEM, TYPE:

 CHIL FILE ;For compilation but no listing
 CHIL FILE,PR: ;For list of Source & Table on printer
 CHIL FILE,FILDEV ;For list of Source & Table on FILDEV
 CHIL FILE,FILDEV,OP OP.. ;For list on FILDEV wtih options
 CHIL FILE,PR:,OP OP OP ;For list on printer with options

 TO COMPILE A CHIL PROGRAM ON THE VAX, TYPE:

 CHIL FILE ;Compiles program with standard options
 CHIL FILE "OP OP .." ;Compiles program with specific options
 ;Listing is always directed to FILE.PRT

 Where, FILE denotes the filename prefix of a source-file whose
 name-extension must be .CHL (you don't type the .CHL part) and:

 OP = NOT says, no HIS-Table listing
 OP = NOS says, no Source listing
 OP = NOC Says, no Condition listing
 OP = NOTR Says, no Condition Trace accumulated
 --
 Note: If you run CHIL and get one of the following diagnostics:
 CONDITION BUFFER OVERFLOW or CONDITION LIBRARY OVERFLOW
 You must use the NOTR option in order to CHIL successfully.

 320.020 INTRODUCTION

 CHIL is a histogramming language used for writing data processing programs
 for both on-line (for data acquisition) and off-line (for tape scanning)
 analysis. Some features of CHIL-based processing programs are listed below.

 (1) WCS routines for many basic operations.
 (2) Both simple and free-form gating accomodated.
 (3) Input of simple gate lists from files (created graphically).
 (4) IF-statements of the form - IF (CONDITION) DEST-LABEL
 (5) Computed-GOTO's of the form - IF (COND-SET) L1,L2,L3,L4..
 (6) Bit testing and branching.
 (7) Loops (no nesting).
 (8) Histograms of dimensionality as large as 4 may be specified.
 (9) Histogram dimensions not restricted to a power of 2.
 (10) Any mixture of legal histogram dimensions may be specified.
 (11) Total size of all histograms may not exceed 33,554,432 half-wds.
 (12) Unrestricted switching between 16- and 32-bits/channel.
 (13) Use of Parm-Names as well as Parm-Numbers in CHIL programming.
 (14) Multiple USERSUBS (up to 3) called from CHIL at will.
 (15) Up to 3 output data-streams from LEMO-based prescan programs.
 (16) Specification of TITLES for individual histograms supported.
 (17) Specification of ID's for individual histograms supported.

 320.030 CHIL SYNTAX - DEFINITIONS AND ASSIGNMENTS

 $LSTL = LENG ;Specify Tape Record Length (bytes)

 $NPR = NPAR ;NPAR =Max# Parms (RAW+GENERATED)

 $LPR IPA TO IPB,IS = LENG ;Specify Parm Lengths (loop)
 $LPR IPA TO IPB = LENG ;Specify Parm Lengths (loop)
 $LPR IP1,IP2,IP3,.. = LENG ;Specify Parm Lengths (list)
 --

 $BAN (LENG) ID1,ID2,ID3 ;Specify BAN-ID's to get from file
 $BAN (LENG) IDA,IDB,IDC ;Determines stacking order
 $BAN (LENG) ;LENG must match that from file

 $BAF FILENAME.BAN/ACT ;Specify BAN-file to process
 ;Must follow $BAN specification
 --
 $GAT (ISN,NG) (ISN,NG) (ISN,NG) ;Specify (Set#, # of gates)
 $GAT (ISN,NG) (ISN,NG) (ISN,NG) ; '' '' '' ''
 $GAT ;As many lines as required

 $MAPF (LENG) ISA,ISB,ISC ;Map Sets ISA,ISB,ISC
 ;with length = LENG
 ;must follow $GAT-definition

 $GAF FILENAME.GAF/ACT ;Specify Gate-file to process
 ;Must follow $MAPF spec if any
 --
 $MAPL LENG,ISN (LO,HI) (LO,HI).. ;Map specific Gate-List with
 &(LO,HI) (LO,HI) ;SET# = ISN (must be unique)
 & ;(any # of continuation lines)

 $GLST LENG,ISN (LO,HI) (LO,HI).. ;Specific unmapped Gate-List with
 &(LO,HI) (LO,HI) ;SET# = ISN (must be unique)
 & ;(any # of continuation lines)
 --
 $DIP SYMA(IV),SYMB(JV)... ;Define Parameter names & dimensions

 $ASS SYM(ISA TO ISB,INC)=JLO,JNC ;Assign values to Parameter names
 $ASS SYM(ISA TO ISB) =JLO,JNC ;Assign values to Parameter names
 $ASS SYM(IS1,IS2...) =JLO ;Assign value to Parameter name
 --
 $DIM SYMA(IV),SYMB(JV)... ;Define name & dimension of symbols

 $DAT SYM(ISA TO ISB) =V1,V2... ;Assign values to symbol names
 $DAT SYM(IS) =V1 ;Assign value to symbol name
 --
 XX=EXPRESSION ;Define or re-define scaler XX
 SYMB(I)=EXPRESSION ;Set SYMB(I) equal to EXPRESSION
 --
 $HWD ICOD,ICOD,ICOD ;Insert Half-WD code into MIL
 $FWD ICOD,ICOD,ICOD ;Insert Full-WD code into MIL
 $H16 ;Specify 16-bits/channel
 $H32 ;Specify 32-bits/channel
 $HID NUID ;Specify next H-ID to use
 $TEX TEXT ;Up to 76 bytes of text

 $TIT TITLE ;Specify title (40 bytes max)
 --

 320.030 CHIL SYNTAX - ASP, IF & CALL STATEMENTS

 ASP(IP,IV) ;Assign to Parm-IP the value IV

 IFU(COND)LABEL ;IF COND unsatisfied, GO TO LABEL
 IFS(COND)LABEL ;IF COND satisfied, GO TO LABEL
 ;otherwise, drop thru (IFU & IFS)

 IFC(CONDITION-SET) L1,L2,L3.... ;Defines a "Computed GO TO"
 IFC(GS(P,IS,NA,NB)) L1,L2,L3.... ;IF COND(1) satisfied, GO TO L1
 IFC(B(PX,PY,IDA,IDB))L1,L2,L3.... ;IF COND(2) satisfied, GO TO L2
 ;IF COND(J) satisfied, GO TO LJ
 ;otherwise, drop through
 ;Limited use inside loop: ref Note-1

 IFX(PARM)LABEL ;IF PARM exists, GO TO LABEL
 IFN(PARM)LABEL ;IF PARM non-exist, GO TO LABEL
 ;otherwise, drop thru (IFX & IFN)

 IFP(PARM)L1,L2,L3,,LJ,.......... ;IF PARM = 0 , GO TO L1
 ;IF PARM = 1 , GO TO L2
 ;IF PARM = J-1 , GO TO LJ
 ;otherwise, drop through
 ;Cannot be used inside loops!

 BTAB(PARM,MASK)LALL,LSOME,LNONE ;GO TO LALL,LSOME,LNONE IF
 ; ALL ,SOME, NONE bits match
 ;Goes to LNONE if Parm non-exist
 ;no drop thru for BTAB

 CALL USERSUB1 ;CALL USERSUB1
 CALL USERSUB2 ;CALL USERSUB2
 CALL USERSUB3 ;CALL USERSUB3

 CALL REPACK1 PA,PB ;Send Parms PA-PB to Out-Stream-1
 CALL REPACK2 PA,PB ;Send Parms PA-PB to Out-Stream-2
 CALL REPACK3 PA,PB ;Send Parms PA-PB to Out-Stream-3

 Important Comment on Banana-Gate Specifications - B(PX,PY IDA,IDB)

 At a given X-coordinate - Banana IDA+1 must lie above Banana IDA

 - Banana IDA+2 must lie above Banana IDA+1

 - Banana IDA+N must lie above Banana IDA+N-1

 Note-1: IFC- and IFP-statements may be used inside loops ONLY on the
 condition that all associated branches are to labels outside the loop.

 320.030 CHIL SYNTAX - HISTOGRAM STATEMENTS

 THE HISTOGRAM SPECIFICATION STATEMENT TAKES THE GENERAL FORM:

 H(I,J..) L(LI,LJ..) "CONDITIONS"

 or

 H(I,J..) L(LI,LJ..) R(LOI,HII LOJ,HIJ..) "CONDITIONS"

 Where:

 H(I,J..) ;Says histogram Parms I,J..

 OH(I,J.) ;Says histogram Parms I,J..
 ;in previously defined "space"

 L(LI,LJ,LK..) ;Defines histogram "Lengths" (Pwr of 2)
 ;Length of Parm-I = LI
 ;Length of Parm-J = LJ
 ;Length of Parm-K = LK

 R(LOI,HII LOJ,HIJ ..) ;Says select Hist-Parm Range (after
 ;shifting) for
 ;Parm-I to be LOI thru HII
 ;Parm-J to be LOJ thru HIJ
 --
 G(P L,H L,H ..) ;Explicit Gate-List (P# LO,HI LO,HI ...)
 ;(not mapped)

 GS(P,IS,NA,NB) ;Gate-List specified by Set# (IS), Gate#'s
 ;(NA,NB) from $GAT, $GLST- or $MAPL-spec.
 ;Mapped if included in $MAPF-spec or given
 ;in $MAPL-spec and if (NA,NB) specifies
 ;full Gate-Set: Otherwise, not mapped.

 B(PX,PY,IDA,IDB) ;BAN-List from BAN-file (X-Parm, Y-Parm,
 ;list of adjacent Bananas)

 Important Comment on Banana-Gate Specifications - B(PX,PY IDA,IDB)

 At a given X-coordinate - Banana IDA+1 must lie above Banana IDA

 - Banana IDA+2 must lie above Banana IDA+1

 - Banana IDA+N must lie above Banana IDA+N-1

 320.040 CHIL SYNTAX - GENERAL RULES

 RULES WHICH APPLY TO ALL STATEMENTS

 (1)....All 80 cols of a line may be used.

 (2)....A blank line shows up as a blank line on the listing.

 (3)....All left and right parenthesis must match.

 (4)....A semicolon ";" is used to introduce a "comment field".

 RULES FOR THE $-DIRECTIVE AND EQUATE STATEMENTS

 (1)....All $-directives ($NPR, $DIM, $ASS, etc) must start in col-1.

 (2)....No continuation of $-directives are allowed except for the
 $MAPL- and $GLST-statements.

 (3)....Equate-directives may start anywhere but shall not be labeled.

 RULES FOR ALL OTHER STATEMENTS

 (1)....Statement labels must be contained within cols 1 thru 5 and be
 no more than 4 characters in length.

 (2)....Statement labels may be composed of any combination of numeric
 and alphabetic characters.

 (3)....All statements must start in col-7 or beyond.

 (4)....Only the H-statement may be "continued" - any char in col-6.
 the max number of continuation lines = 19.
 --
 SYNTAX IS RIGID - FOLLOW DOCUMENTATION & EXAMPLES CAREFULLY
 --

 COMMENTS

 Meaning of the Assign directive - $ASS SYM(I TO J)=JLO,JNC

 This means assign symbols SYM(I), SYM(I+1) ... SYM(J) the values JLO,
 JLO+JNC, JLO+2*JNC

 Difference between $DIP and $DIM

 Values assigned to symbols dimensioned via the $DIP specification must be
 unique and in the range 1 through NPAR (the max # Parms given by $NPR). In
 addition, only those parameters defined by the $DIP specification will be
 represented by their "names" on the histogram summary. Values may not be
 assigned to $DIP-symbols via an "Equate". None of these rules apply to
 $DIM-symbols.

 320.050 PARAMETER LENGTHS

 The "Parameter Length" defines the maximum value (always a power of 2) to
 be associated with a given parameter. Parameter Length specifications must
 follow the $NPR-statement. The following specification forms are supported:

 $LPR IPA TO IPB,IS = LENG ;Sets length of parameters (IPA to IPB
 ;in steps of IS) to be LENG.

 $LPR IPA TO IPB = LENG ;Sets length of parameters (IPA to IPB
 ;in steps of 1) to be LENG.

 $LPR IP1,IP2,IP3,.. = LENG ;Sets length of parameters (IP1,IP2,
 ;IP3,...) to be LENG.

 Lengths may be re-specified as many times as convenient but all lengths
 must be given at least once before another statement type is encountered.
 The following example illustrates the procedure:

 $NPR = 240

 $LPR 1 TO 240 = 2048

 $LPR 220 TO 222 = 1024

 $LPR 229 TO 239,2 = 8192

 $LPR 219 = 64

 320.060 PARAMETER NAMES

 Names (beginning with a letter and up to 8 characters in length) may be
 associated with some or all parameter numbers and can be used to reference
 any parameter, so named, in the CHIL program. Two steps are required.

 (1)....First, the name must appear in a $DIP-statement (dimension
 parameter statement) even if it's dimension is to be only unity.

 (2)....Values must then be assigned to the names by means of the
 $ASS-statement (assign statement).

 The $DIP-statement takes the form:

 $DIP NAME1(IV),NAME2(JV),.. ;Where, NAME1, NAME2, .. denotes the
 ;parameter names being defined and

 ;IV, JV, .. denotes the associated
 ;dimension.

 The $ASS-statement takes the form:

 $ASS NAME1(IA TO IB,IS)=JLO,JNC ;Where, NAME1 denotes the name to
 ;which values are being assigned and
 ;(IA TO IB,IS) defines a loop on the
 ;name index.

 ;JLO is the first value to assign.
 ;JNC is the value-increment to be
 ;added for successive assignments.
 ;In this case we have:

 ;NAME1(IA) = JLO
 ;NAME1(IA+IS) = JLO+JNC
 ;NAME1(IA+2*IS) = JLO+2*JNC

 $ASS NAME2(IA TO IB) =JLO,JNC ;Assigns values with index increment
 ;equal to unity.

 $ASS NAME2(IC) =JLO ;Assigns the value JLO to NAME2(IC)

 THE FOLLOWING EXAMPLE ILLUSTRATES:

 $DIP NAI(72),TAC(72),GELI(6) ;Define parameter names & dimensions
 $DIP TOTK(1)

 $ASS NAI(1 TO 72) = 1,3 ;Assign values 1,4,7,10,13
 $ASS TAC(1 TO 72) = 2,3 ;Assign values 2,5,8,11,14
 $ASS TOTK(1) = 219 ;Assign the value 219 to TOTK(1)

 320.070 GATES - SIMPLE (LO-LIMIT, HI-LIMIT PAIRS)

 Simple gates (i.e. Lo-Limit, Hi-Limit pairs to be imposed on single
 parameters) can be entered in three different ways.

 METHOD - 1 ---

 A single gate of the form: G(PARM LO,HI) may be defined in an IF-statement
 (IFS or IFU) or an H-statement. The H-statement also allows the form:
 G(PARM LO,HI LO,HI LO,HI ..) - i.e multiple gates on a single parameter.
 Here, PARM denotes the test-parameter number or name and LO,HI denotes the
 pair of limits to be imposed. Gates entered in this way must be given in
 terms of the raw test-parameter length.

 METHOD - 2 ---

 Multiple gates may also be entered by means of the $GLST-statement which
 takes the form:

 $GLST LENG,ISN LO,HI LO,HI LO,HI

 Where, LENG represents the Parameter-Length on which the limits are based
 and ISN the Set-Number by which this particular Gate-Set is to be
 referenced. In this case, limits do not have to be entered on the basis of
 the raw test-parameter length.

 METHOD - 3 ---

 Gate-Sets may also be read from a disk file generated by program GATLIN
 which allows one to define gates interactively. Input of gates from such a
 file requires two types of statements:

 $GAT (ISN,NG) (ISN,NG)
 and
 $GAF FILENAME.GAF ;The .GAF-extension is required

 The $GAT-statement specifies which Gate-Set ID's (denoted by ISN) are to
 be read from the file and the maximum number of gates (denoted by NG) to
 be read from each Gate-Set. Note: that the file may actually contain more
 or less gates per Set than is specified. If it contains less, the "excess"
 gates are set to "impossible". If it contains more, only the first NG
 gates are read in. The length basis on which the gates are defined is
 provided automatically by GATLIN. The $GAF-statement specifies the name of
 the file to be processed

 IMPORTANT COMMENTS

 Gates entered via METHOD-2 or -3 may only be used in H-statements and
 Computed GOTO's (IFC-statements) and are referenced by Set# (ISN) and
 a Gate# range (NA thu NB) as follows.

 GS(PARM,ISN NA,NB)

 Gates must be entered in increasing order and cannot overlap.

 320.080 GATES - SIMPLE (MAPPED)

 If a large number (5 or more) gates are to be imposed on a given parameter
 (in an H-statement), processing will proceed faster if the gates are

 "mapped". This may be accomplished in two ways:

 METHOD - 1 ---

 One may specify the gates to be mapped by means of the $MAPL-statement as
 follows:

 $MAPL LENG,ISN LO,HI LO,HI LO,HI
 & as many continuation lines as required

 Where, LENG represents the Parameter-Length on which the limits are based
 and ISN the Set-Number by which this particular Gate-Set is to be
 referenced. In this case, limits do not have to be entered on the basis of
 the raw Test-Parameter length.

 METHOD - 2 ---

 Gate-Sets may also be read from a disk file generated by program GATLIN
 which allows one to define gates interactively. Mapping of gates from such
 a file requires three types of statements given in the order shown below:

 $GAT (ISN,NG) (ISN,NG)
 $MAPF LENG ISA,ISB,ISC
 $GAF FILENAME.GAF ;The .GAF-extension is required

 The $GAT-statement specifies which Gate-Set ID's (denoted by ISN) are to
 be read from the file and the maximum number of gates (denoted by NG) to
 be read from each Gate-Set. Note: that the file may actually contain more
 or less gates per set than is specified. If it contains less, the "excess"
 gates are set to "impossible". If it contains more, only the first NG
 gates are read in.

 The $MAPF-statement specifies which of these Gate-Sets are to be mapped
 (ISA, ISB .. etc) and gives the length basis LENG on which mapping is to
 be done. Note: This can be different from the basis on which gates were
 entered.

 The $GAF-statement specifies the name of the file to be processed

 IMPORTANT COMMENT

 Gates entered as described above may only be used in H-statements and
 Computed GOTO's (IFC-statements) and are referenced by Set# (ISN) and a
 Gate# range (NA thu NB) as follows.

 GS(PARM,ISN NA,NB)

 For gate mapping to be used, the full Gate-Set specified by the
 $GAT-statement or by the $MAPL-statement must be requested by (NA,NB).

 320.090 GATES - FREE-FORM (BANANAS)

 Free-Form-Gates must always be created "outside" of the CHIL program using
 the interactive display program RIP and stored on a special file
 (BAN-file). Incorporation of such Free-Form-Gates into a CHIL program
 requires one or more statements of the following form:

 $BAN LENG IDA,IDB,IDC

 The $BAN-statement specifies which Banana ID-numbers (IDA, IDB ...) are to
 be retrieved from the BAN-file and gives the X-length basis LENG on which
 they were constructed or will be constructed. At this time space is set
 aside to accommodate Free-Form-Gates which are to be processed.

 The BAN-file to be processed may be specified in the CHIL program or this
 specification may be deferred until run-time. Specification in the CHIL
 program takes the following form:

 $BAF FILENAME.BAN ;The .BAN-extension is required

 If the $BAF-statement is not included in the CHIL program or if it desired
 to process a new or modified BAN-file at run-time, the following command
 may be issued to the monitor task or scan program.

 NUBAN FILENAME.BAN

 At such time, all Free-Form-Gates are reset to "impossible" and the given
 file is processed to provide a new set.

 COMMENTS

 (1)....The length given in the $BAN-statement must match that contained in
 the BAN-file.

 (2)....Any ID-numbers specified in the $BAN-statement but not found in the
 BAN-file will be left set to "impossible" and a "not found"
 diagnostic message will be issued when such file is processed.

 (3)....If no $BAF-statement is entered at CHIL-time, no comment will be
 made - you will find out sooner or later, I guess.

 320.100 IF-STATEMENTS AND COMPUTED GOTO'S

 CHIL supports IF-statements of the following forms: ------------------

 IFS(CON)LABEL ;IF condition CON satisfied, GO TO LABEL
 IFU(CON)LABEL ;IF condition CON unsatisfied, GO TO LABEL
 IFX(PAR)LABEL ;IF parameter PAR exists, GO TO LABEL
 IFN(PAR)LABEL ;IF parameter PAR non-exists, GO TO LABEL

 Here, CON denotes a single Simple-Gate or a single Free-Form-Gate and PAR
 denotes a parameter number or name. Note examples below:

 IFS(G(1,50,100))100 ;IF gate on Parm-1 (50 thru 100) is
 ;satisfied, GO TO statement LABEL 100.

 IFU(G(NAI(7),50,100))20 ;IF gate on Parm-NAI(7) (50 thru 100)
 ;is not satisfied, GO TO 20.

 IFU(B(E(1),DE(1) 1))ZIP ;IF Free-Form-Gate test on X-Parm-E(1) and
 ;Y-Parm-DE(1), using Banana-ID# 1, is not
 ;satisfied, GO TO the statement labeled, ZIP.

 IFN(23) NEXT ;IF Parm-23 does not exist, GO TO NEXT.

 CHIL supports computed GOTO's of the following forms: ----------------

 IFC(COND-SET)L1,L2,L3 ..;COND-SET denotes a Condition-Set
 ;If 1st member is satisfied, GO TO L1
 ;If 2nd member is satisfied, GO TO L2
 ;... etc ..., otherwise, drop through.

 IFP(PARM) L1,L2,L3 ..;PARM denotes a parameter number or name
 ;IF PARM = 0, GO TO L1
 ;IF PARM = 1, GO TO L2
 ;IF PARM = J-1, GO TO LJ
 ;... etc ..., otherwise, drop through.

 The "Condition Set" refered to here, denotes an adjacent set of
 Free-Form-Gates (ordered such that at a given X-coordinate, Banana-N lies
 below Banana-(N+1) which are all of the same "length" and whose ID-numbers
 are consecutive or a list of Simple Gates which have been specified by the
 $GLST-statement or defined by the $GAT-statement and read in from a disk
 file by the $GAF-statement or the NUGAT command. A couple of examples are
 given below:

 IFC(GS(ETOT(1),ISN 1,3)) 10,20,30 ;Test-Parm=ETOT(1), Gate-Set#=ISN

 ;gates 1 thru 3 are to be tested.

 IFC(B(10,11 5,8)) 100,200,300,400 ;X-Parm=10, Y-Parm=11, Banana-ID's
 ;5 thru 8 are to be tested.

 Note: # of gates or Banana-ID's implied must match number of labels!

 320.110 BIT-TESTS

 CHIL supports a bit-test and three-way branch statement of the following
 form:

 BTAB(PARM,MASK)LALL,LSOME,LNONE

 where,

 PARM denotes the parameter number or name to be tested and MASK defines
 the bits of interest. MASK can be, most conveniently, specified as
 hexadecimal number whose first character must be a decimal integer and
 whose last character must be an "H".

 The statement means:

 GOTO...the statement labeled LALL, if all of the bits which are set in the
 MASK are also set in the Test-Parameter.

 GOTO...the statement labeled LSOME, if some (but not all) of the bits
 which are set in the MASK are also set in the Test-Parameter.

 GOTO...the statement labeled LNONE, if none of the bits which are set in
 the MASK are set in the Test-Parameter.

 GOTO...the statement labeled LNONE if the Test-Parameter does not exist
 (i.e. has the hexidecimal value FFFF).

 There is no "drop through" condition for this test.

 320.120 HISTOGRAM - BITS/CHANNEL

 The number of bits per channel used for histogram storage may be set to be
 either 16 (half word) or 32 (full word). This is accomplished in the CHIL
 program by the following two direstives:

 $H16 ;Sets 16-bits/channel - Max count = 65,535 ------ the default

 $H32 ;Sets 32-bits/channel - Max count = 4,294,967,303

 There is no restriction on how many such directives may be entered but the
 user should be aware of the fact that each such entry results in the
 histogram space required being rounded up to the next integer multiple of
 32768 16-bit channels (i.e. next multiple of 64 kb). I will say it again.

 Each $H16 or $H32 entry rounds up memory required to a multiple of
 64 kilobytes

 320.130 HISTOGRAM - ID NUMBERS

 If you do nothing, histogram ID-numbers will start at 1 and run
 consecutively, however, the beginning of the ID-number sequence may be
 redefined by the following statement:

 $HID ID

 Where, ID (a decimal integer of up to 8 digits) denotes the ID-number to
 be assigned to the next histogram processed. Histogram ID-sequences may be
 defined any number of times in the CHIL program so long as one sequence
 does not overlap another.

 320.140 HISTOGRAM - TITLES

 A title of up to 40 characters may be associated with each histogram by
 using the following statement.

 $TIT TITLE

 Where TITLE denotes the 40 ASCII characters mentioned above. Once a title
 is defined, it becomes associated (stored in the directory entry) of all
 subsequent histograms until re-defined.

 Program HEDDO may be used to display and list directory entries as well
 modify (or add) titles contained therein.

 320.150 HISTOGRAM - STATEMENTS

 The Histogram statement (H-statement) specifies which parameters are to be
 histogrammed, the length of each histogram parameter (implies the number
 of bits to shift the associated raw parameter), optionally - the range to
 be selected after shifting and any conditions (Simple Gates or Free-Form
 Gates) to be imposed. The H-statement must start in col-7 or beyond and
 has the following general form:

 H(I,J..) L(LI,LJ..) R(LOI,HII LOJ,HIJ..) "CONDITIONS"
 ! ! ! !
 !---- optional ----! ! optional !
 or

 OH(I,J..) L(LI,LJ..) R(LOI,HII LOJ,HIJ..) "CONDITIONS"
 ! ! ! !
 !---- optional ----! ! optional !
 Where:

 H(I,J..) ;Means histogram parameters I,J .. etc

 OH(I,J.) ;Means histogram parameters I,J .. etc
 ;in the same "space" defined by the most
 ;recent H-statement.

 L(LI,LJ,LK..) ;Defines histogram parameter "lengths".
 ;always a power-of-2
 ;Implies # of bits to shift raw parameter.
 ;Specifies histogram dimensions unless the
 ;range is specified explicitly by the
 ;R-specification below.
 ;Length of histogram-parameter-I = LI
 ;Length of histogram-parameter-J = LJ
 ;Length of histogram-parameter-K = LK

 R(LOI,HII LOJ,HIJ ..) ;Means select histogram-parameter Range
 ;(after shifting - i.e. on the basis of the
 ;length defined above) for:
 ;Parameter-I to be LOI thru HII
 ;Parameter-J to be LOJ thru HIJ

 I will try to say it in a different way - just to fill out the page if
 nothing else. The L-specification L(LI,LJ ..) tells CHIL how many bits to
 shift the raw parameters prior to histogramming. The R-specification
 R(LOI,HII LOJ,HIJ ..), which is optional, can be used to select a limited
 portion of the histogram dimensions given by the L-specification. See the
 last section for some examples.

 320.150 HISTOGRAM - STATEMENTS (CONTINUED)

 Histogram "CONDITIONS" consist of one or more Condition Lists (OR-lists)
 of the following types:

 G(P LO,HI LO,HI ..) ;Explicit list of non-overlapping simple
 ;gates

 ;P - denotes test parameter number or name
 ;LO,HI - denotes gate-limits
 ;not mapped

 GS(P,IS,NA,NB) ;Gate-List specified by Set# (IS), Gate#'s
 ;(NA,NB) from $GAT-, $GLST-, or
 ;$MAPL-statement.
 ;mapped if included in a $MAPF-statement or
 ;given in a $MAPL-statement and if (NA,NB)
 ;specifies the full Gate-Set:
 ;Otherwise, not mapped.

 B(PX,PY IDA,IDB) ;Free-Form Gate-List from BAN-file
 ;PX = X-test-parameter number or name
 ;PY = Y-test-parameter number or name
 ;IDA,IDB - gives first and last ID-numbers
 ;of a list of "adjacent" Free-Form-Gates.
 ;That is, at a given X-coordinate, BAN-IDA
 ;must lie below BAN-(IDA+1).
 ;All members of list must be of equal
 ;length and have consecutive ID-numbers.

 WHAT IS THE IMPLICATION OF MULTIPLE GATE-LISTS?

 Definition: OR-list = Simple Gate-List or Free-Form Gate-List.

 You will get a count "somewhere" if and only if some member of each
 OR-list is satisfied. If you have N OR-lists in the H-statement and NG(I)
 represents the number of gates in the Ith list, then the number of
 histograms (NH) actually implied by the H-statement is given by:

 NH=NG(1)*NG(2)*------NG(N-1)*NG(N)

 320.160 LOOPS

 Loops are implemented so as to "look like FORTRAN". However, one must keep
 in mind that "loops" are actually expanded by the CHIL complier and that
 all "loop parameters" are constants. See SEC# 320.170 for more discussion
 of symbols and expressions.

 Two examples which make use of loops are given below.

 EXAMPLE-1: ---

 Produce 72 1-D histograms of parameters 1,4,7...214 with a gate (500,1000)
 set on associated parameters 2,5,8...215.

 DO 100 I=1,214,3
 J=I+1
 H(I) L(512) G(J,500,1000)
 100 CONTINUE

 EXAMPLE-2: ---

 Produce 72 1-D histograms of parameters 1,4,7...214 with the requirement
 that a parameter named ETOT (parameter # 250) be in the range 1000 to 2000.
 Define parameter names and associated values as follows:

 $DIP NAI(72),ETOT(1) ;Define parameter names
 $ASS NAI(1 TO 72)=1,3 ;Assign values to NAI
 $ASS ETOT(1)=250 ;Assign value to ETOT

 IFU(G(ETOT(1),1000,2000)) 200 ;Skip loop if gate un-satisfied

 DO 100 I=1,72 ;Loop on 72 NAI detectors
 H(NAI(I)) L(256) ;Histogram NAI(I)
 100 CONTINUE

 200 CONTINUE

 320.170 SYMBOLS & EXPRESSIONS

 Symbols defined by the "Equate Directive" (SYM=EXPRESSION) are called
 compile-time variables. Such variables may be re-defined without
 restriction. These are not run-time variables! - THERE ARE NO RUN-TIME
 VARIABLES IN CHIL!! Compile-time variables must be defined in terms of
 numbers and/or previously defined compile-time variables. At a given place
 in a CHIL program, the value associated with a given symbol is always the
 same - NO MATTER HOW YOU GET THERE!!

 The CHIL compiler supports simple expressions which are evaluated left to
 right. REPEAT!! EVALUATED! LEFT! TO! RIGHT! Let V represent a single value
 (number or previously defined symbol). Let S represent an algebraic sum of
 V's. Expressions of the following type are legal:

 A=V
 A=S
 A=S*V+S Means: A=(S)*V+S
 A=S/V+S Means: A=(S)/V+S
 A=S/V*V+S Means: A=((S)/V)*V+S
 A=MOD(S,S) No additional terms allowed
 (same argument definition as in FORTRAN)

 A=S+[S,S,..] Where [] encloses a list of bit-numbers
 (Lo-order bit-number = 1)

 NUMERICAL EXAMPLES:

 ASSIGNMENT RESULT

 A=10 A=10
 B=A+4 B=14
 C=A+B-9 C=15
 D=100/B D=7
 E=A+B+C/6 E=6
 F=A+B-C*7 F=63
 G=A+B-C/6*A G=10
 H=A+B-C/6*A+C+10 H=35
 I=MOD(A+B,7) I=3
 J=MOD(A+B,E-1) J=4
 K=[A+6,3] K=8004 (HEX)
 L=[A+6,3]+40H L=8044 (HEX)
 M=[2,1] M=3
 N=[A+6,M] N=8004 (HEX)

 * * * PARENTHESES ARE NOT ALLOWED EXCEPT IN THE "MOD STATEMENT" * * *

 320.180 PRE-SCANNING - CONSIDERATIONS

 Pre-scanning (as interpreted here) involves the processing of an input
 data stream (usually from Mag Tape) to produce an output data stream
 (usually to Mag Tape). The "processing" may include selection of certain
 events, selection of certain parameters, modification of input parameters
 or creation of new parameters or any combination of the preceding.

 A CHIL-based prescan task involves the use of LEMO (or a customized
 version thereof) to control the process combined with a CHIL program which
 aides in the selection of events and/or parameters. Modification or
 creation of parameters will normally require one or more user-supplied
 subroutines USERSUBS.

 The CHIL-based prescan program may include any legal CHIL statement except
 for the H-statement (i.e. concurrent histogramming is not supported). The
 CALL REPACK1 (not legal in histogramming programs) is used to initiate the
 "saving of an event" into the output data stream. The following simple
 example illustrates:

 Prescan program which selects only those events for which parameters 18

 and 16 satisfy Free-Form-Gate number-1 from file DEC2.BAN. If gate is
 satisfied, all parameters of event are saved.

 $LSTL = 8192 ;Specify tape record length in bytes

 $NPR 18 ;Specify number of parameters

 $LPR 1 TO 2 = 64 ;Specify length of parameters 1 & 2
 $LPR 3 TO 18 = 2048 ;Specify length of parameters 3 to 18

 $BAN (256) 1 ;Request Free-Form-Gate from BAN-file
 ;(X-length = 256, ID-number = 1)

 $BAF DCE2.BAN ;Give name of BAN-file

 IFU(B(18,16 1)) 100 ;Test X,Y-parameters (18,16) against gate
 ;Skip it if gate not satisfied

 CALL REPACK1 1,18 ;Otherwise, save event in output stream
 ; 1 is lowest parameter-# to save
 ;18 is highest parameter-# to save

 100 CONTINUE
 --

 320.190 USER-SUPPLIED SUBROUTINES

 The user is able (by means of from 1 to 3 user-supplied subroutines named
 USERSUB1, USERSUB2, USERSUB3) to intercept and modify the Event-by-Event
 data stream that is being processed by a CHIL-based tape scan, prescan, or
 on-line monitor task. (i.e. standard programs designed to process HHIRF
 format L002). The interception occurrs after the event is unpacked,
 always, and when the CALL USERSUB1, etc is executed in the CHIL program.
 Thus, new or modified parameters may be ,subsequently, tested and
 histogrammed in the same way as any others. The number of parameters
 specified by the $NPR-statement must be increased to include any
 additional parameters which are generated.

 Stock histogramming and prescan tasks include a dummy USERSUB: Customized
 packages are created by linking a new task in which this dummy routine is
 replaced by the user's routines. A customized task usually includes a user
 command processor USERCMP and possibly other support routines in addition
 to the USERSUBS. A skeleton USERSUB which just sets parameter-50 =
 parameter-1 is shown below:

 SUBROUTINE USERSUB1(IBUF)

 INTEGER*2 IBUF(512)
 IBUF(50)=IBUF(1)
 RETURN
 END

 Your routine will receive the "Event" in expanded form. That is, all
 parameters will be in their "proper place" and any parameters which were
 not present in the raw event will be set to X'FFFF'.

 Suppose that the maximum # of parameters in the original event is 20 and
 USERSUB1 is to generate up to 10 more. You would specify $NPR = 30 in your
 CHIL program. When your subroutine is entered, IBUF(I),I=1,20 would be set
 to the parameter value or to X'FFFF' for any missing parameters.
 IBUF(I),I=21,30 would be set to X'FFFF'.

 Parameters which you generate should be in the range 0 - 16383 or less.
 Any missing parameters should be left set to X'FFFF'. In the interest of
 speed, USERSUBS should avoid calling other routines on an Event-by-Event
 basis. Subroutine and function calls take at least 10 microseconds and the
 linkage time increases as the number of subprogram arguments increase.

 USER COMMAND PROCESSOR - USERCMP

 The function of the user command processor is to process user-defined
 commands for set-up purposes etc. When the main program receives a command
 UCOM, it strips off the UCOM as well as blanks between UCOM and the next
 non-blank character and calls USERCMP with the remaining buffer as an
 argument. A skeleton user command processor is shown on the next page.

 320.190 USER-SUPPLIED SUBROUTINES - COMMAND PROCESSOR

 The skeleton user command processor given below illustrates some of the
 basic functions normally required. Note: the use of routines GREAD
 (reformats input line), FINAME (picks up file name), FILMAN (creates,
 opens & closes files), MILV (pause proof decoder of integer & floating
 number fields), and UMESSO (message sender).

 SUBROUTINE USERCMP(IWD)
 INTEGER*4 IWD(20),LWD(2,40),ITYP(40),NAMFIL(6),MESBUF(13,3)
 COMMON/MYCOM/ IV(50),NI
 EQUIVALENCE (KMD,LWD(1,1))
 DATA MESBUF/
 1'UNRECOGNIZED UCOM COMMAND - IGNORED ',
 2'SYNTAX ERROR IN UCOM COMMAND - IGNORED ',
 3'ERROR DECODING LIST OF INTEGER NUMBERS '/
 C

 CALL GREAD(IWD,LWD,ITYP,NF,1,80,NTER) ;RE-FORMAT INPUT LINE
 C
 IF(KMD.EQ.'FILE') GO TO 100 ;TEST COMMAND TYPE
 IF(KMD.EQ.'ICON') GO TO 200 ; " " "
 GO TO 510 ;ERROR IF NOT FOUND
 C
 C PICK UP FILE-NAME AND OPEN A FILE ****************************
 C
 100 CALL FINAME(IWD,5,80,NAMFIL,IERR) ;GET FILE NAME
 IF(IERR.NE.0) RETURN ;TST FOR ERROR
 LU=1 ;SPECIFY LOGICAL UNIT
 CALL FILMAN(2,NAMFIL,LU,0,0,0,0,0,ISTAT) ;OPEN THE FILE
 CALL OPERR(ISTAT) ;REPORT ANY ERROR
 IF(ISTAT.NE.0) RETURN ;TEST FOR ERROR
 C
 C DO WHATEVER - AND RETURN -----------------------------------
 C
 RETURN
 C
 C DECODE A LIST OF INTEGER VALUES ******************************
 C
 200 IF(NTER.NE.0) GO TO 520 ;TEST FOR GREAD ERROR
 NI=0 ;INIT # OF VALUES
 DO 210 J=2,NF ;LOOP ON NF-1 FIELDS
 CALL MILV(LWD(1,J),IV(J-1),XX,KIND,IERR) ;DECODE INTO IV(J-1)
 IF(IERR.NE.0.OR.KIND.NE.1) GO TO 530 ;TEST FOR ERROR
 210 CONTINUE
 NI=NF-1 ;SET # OF VALUES
 RETURN
 C
 C SEND ERROR MESSAGES **
 C
 510 CALL UMESSO(1,MESBUF(1,1))
 RETURN
 520 CALL UMESSO(1,MESBUF(1,2))
 RETURN
 530 CALL UMESSO(1,MESBUF(1,3))
 RETURN
 END

 320.190 USER-SUPPLIED SUBROUTINES - MESSAGES FROM

 In the data acquisition enviornment, the user does not have direct access
 to the CRT terminal or the BATMAMA.LOG file. however, information may be
 sent to the terminal and/or the log-file by means of routine UMESSO which
 is included in the main package. the procedure is this: Set the text that

 you wish to be transmitted into an INTEGER*4 array of dimension 13 and
 call UMESSO to send it. The following code illustrates the different
 options:

 INTEGER*4 MESBUF(13)
 C
 DATA MESBUF/'THIS IS A MESSAGE ',8*4H /
 C
 CALL UMESSO(1,MESBUF) ;Send to terminal only
 C
 CALL UMESSO(2,MESBUF) ;Send to log-file only
 C
 CALL UMESSO(3,MESBUF) ;Send to terminal and log-file
 C
 CALL UMESSO(-1,MESBUF) ;Spontaneous message to terminal
 C
 CALL UMESSO(-2,MESBUF) ;Spontaneous message to log-file
 C
 CALL UMESSO(-3,MESBUF) ;Spontaneous message to terminal & log

 A spontaneous message is one that does not arise as a result a UCOM
 command to the main program. The negative log flag is required in order
 that the "prompt" be re-issued in such cases. That is already too much
 explanation - just do it that way.

 --

 A UMESSO routine is also included in all CHIL-based main programs so that
 the same user routines may be used for customizing. For SCAN- and PRESCAN-
 tasks, the log-file becomes the print-file.

 No distinction is made between plus and minus log-flags in SCAN and
 PRESCAN programs. If you are not going to use your routines to customize a
 data acquisition MONITOR program such as MO1, there is no need to worry
 about the "spontaneous message" business.

 --

 320.200 HOW TO CREATE CUSTOMIZED CHIL-BASED TASKS

 (1)....Use the editor to create the desired USERSUBS, USERCMP and other
 required routines and save all such routines on one file
 (MYRUTS.FTN for example).

 (2)....Compile these routines to obtain an object file (MYRUTS.OBJ for
 example) by typing:

 F7D MYRUTS ;For a non-optimized compilation while de-bugging
 or
 F7O MYRUTS ;For an optimized compilation after de-bugging

 (3)....Link your routines with the "main package" by typing:

 SCANLNK MYRUTS,MYSCAN ;To produce a tape-scan task

 LEMOLNK MYRUTS,MYLEMO ;To produce a prescan task

 MOLNK1 MYRUTS,MYMO1 ;To produce a 1024k in-core monitor task

 Where, MYSCAN, MYMO1 & MYLEMO denote any legal filename prefixes (up to 8
 characters in length) for the task file to be produced.

 You may wish to produce your own CSS for executing scan- and prescan-
 tasks. To do this, use the editor to get SCAN.CSS/S or LEMO.CSS/S, change
 the line which loads the task (L SCAN,@2 or L LEMO) to load the task which
 you have created and save the modified CSS in your account under the
 desired FILENAME.CSS.

 LOGICAL UNITS AND COMMON BLOCKS

 --
 LOGICAL UINTS - 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 CHIL-based SCAN tasks use - X X X X X X X X
 CHIL-based PRESCAN tasks use - X X X X X X X X X
 CHIL-based MONITOR tasks use - X X X X X X X X

 USER-SUPPLIED routines may safely use Logical Units 0, 1, 2, 3, 4, 7

 All CHIL-based tasks use COMMON BLOCK labels /AAA/ through /ZZZ/
 CHIL-based MONITOR tasks use /HIS1/, /MAMACOM/, /ACQCOM/ & /DIR/
 as well.

 USER-SUPPLIED routines should not use these COMMON BLOCK labels
 --

 320.210 DIRECTORY FILE - STRUCTURE

 STRUCTURE OF .DIR-FILE - FIRST RECORD (128 BYTES) ********************

 JDIRF(1-3) - 'HHIRFDIR0001'
 JDIRF(4) - # of histograms on .HIS-file
 JDIRF(5) - # of half-words on .HIS-file

 JDIRF(7-12) - YR,MO,DA,HR,MN,SC (date, time of CHIL run)
 JDIRF(13-32) - TEXT (entered in CHIL via $TEX command)

 STRUCTURE OF .DIR-FILE - DIRECTORY ENTRY (128 BYTES) *****************

 IDIRH(1) - Histogram dimensionality (max = 4)
 IDIRH(2) - Number of half-words per channel (1 or 2)
 IDIRH(3-6) - Histogram Parm#'s (up to 4 parameters)
 IDIRH(7-10) - Length of raw parameters (pwr of 2)
 IDIRH(11-14) - Length of scaled parameters (pwr of 2)
 IDIRH(15-18) - MIN channel# list
 IDIRH(19-22) - MAX channel# list
 IDIRF(12) - Disk offset in half-words (1st word# minus 1)
 IDIRF(13-15) - X-Parm label
 IDIRF(16-18) - Y-Parm label
 XDIRF(19-22) - Calibration constants (up to 4 FP numbers)
 IDIRF(23-32) - Sub-title (40 bytes) (entered via $TIT cmd)

 STRUCTURE OF .DIR-FILE - ID-LIST (32 ID'S/RECORD) ********************

 IDLST(1) - ID number of 1st histogram defined
 IDLST(2) - ID number of 2nd histogram defined
 -
 DEFINITIONS OF COMMON/DIR/ ***

 COMMON/DIR/KLOC(6),JHSP(4),LENG(4),ND,NHW,LENH,LENT,IOF,LDF,
 &NHIS,LEND(4),LENS(4),MINC(4),MAXC(4),CONS(4),ITEX(20),
 &ITIT(10),LABX(3),LABY(3),MSER(10),KFILT

 KLOC(I),I=1,6 = YR,MO,DAY,HR,MIN,SEC
 JHSP(I),I=1,4 = Histogram parameters
 LENG(I),I=1,4 = HIST "Lengths" - (MIXC(I)-MINC(I)+1)
 LEND(I),I=1,4 = Raw -Data "Lengths" in channels
 LENS(I),I=1,4 = Scaled-Data "Lengths" in channels
 MINC(I),I=1,4 = MIN channel# list
 MAXC(I),I=1,4 = MAX channel# list
 CONS(I),I=1,4 = CAL constants
 ITEX(I),I=1,20 = TEXT from $TEX CHIL-entry
 ITIT(I),I=1,10 = TITLE from $TIT CHIL-entry
 LABX(I),I=1,3 = X-Parm label if any
 LABY(I),I=1,3 = Y-Parm label if any
 ND = Dimensionality of histogram (# parms and # lengths)
 NHW = # half-words/channel
 LENH = # of half-words in this histogram
 LENT = Not defined
 IOF = Disk "offset" of 1st WD of this histogram (1st WD # -1)

 (in half-words)
 LDF = Length of disk file "USER.HIS" in half-words
 NHIS = Total # of histograms on file "USER.HIS"

 320.220 EXAMPLES

 EXAMPLE-1 - SIMPLE PROGRAM DEFINING SYMBOLS & USING LOOPS & GATES

 $TEX XFER EXP 150Nd+154Sm with 2-PPAC 3-GE 4-NAI (P2G3N4)
 $LSTL = 8192 ;Tape record length (bytes)
 $NPR = 21 ;Number of parameters/event (max)
 $LPR 1 TO 5,2 = 8192 ;Length of parameters 1,3,5 - GE Energy
 $LPR 2 TO 6,2 = 2048 ;Length of parameters 2,4,6 - GE Time
 $LPR 7 TO 21,1 = 2048 ;Length of all other parameters
 $DIP GE(3),GT(3) ;Define names - GE Energy & GE Time
 $DIP NAE(4),NAT(4) ;Define names - NAI Energy & NAI Time
 $DIP LX(1),LY(1) ;Define names - PPAC Left-X & Left-Y
 $DIP RX(1),RY(1) ;Define names - PPAC Right-X & Right-Y
 $DIP DT(1) ;Define name - Delta Time
 $DIP H(1) ;Define name - NAI Total Energy
 $DIP K(1) ;Define name - NAI Multiplicity
 $ASS GE(1 TO 3) = 1,2 ;Assign Parameter# to GE Energy
 $ASS GT(1 TO 3) = 2,2 ;Assign Parameter# to GE Time
 $ASS NAE(1 TO 4) = 7,2 ;Assign Parameter# to NAI Energy
 $ASS NAT(1 TO 4) = 8,2 ;Assign Parameter# to NAI Time
 $ASS H(1) = 15 ;Assign Parameter# to NAI Total Energy
 $ASS K(1) = 16 ;Assign Parameter# to NAI Multiplicity
 $ASS LX(1) = 17 ;Assign Parameter# to PPAC Left-X
 $ASS LY(1) = 18 ;Assign Parameter# to PPAC Left-Y
 $ASS RX(1) = 19 ;Assign Parameter# to PPAC Right-X
 $ASS RY(1) = 20 ;Assign Parameter# to PPAC Right-Y
 $ASS DT(1) = 21 ;Assign Parameter# to Delta Time
 $H32 ;Specify 32-bits/channel histogramming

 $HID 1
 $TIT PPAC's
 H(RX(1),LX(1)) L(256,256) ;PPAC L-X vs R-X ID = 1
 H(RY(1),LY(1)) L(256,256) ;PPAC L-Y vs R-Y ID = 2
 H(DT(1),LX(1)) L(256,256) ;PPAC L-X vs D-T ID = 3
 $TIT K vs H
 H(K(1),H(1)) L(64,128) ;K vs H ID = 4
 $TIT GE RAW
 $HID 11
 DO GEE I=1,3 ;GE Energy ID = 11 to 13
 H(GE(I)) L(4096) G(GE(I) 0,8191)
 GEE CONTINUE

 $HID 21
 DO GET I=1,3 ;GE Time ID = 21 to 23
 H(GT(I)) L(256) G(GT(I) 0,2047)
 GET CONTINUE
 $TIT NAI RAW
 $HID 31
 DO NAIE I=1,4 ;NAI Energy ID = 31 to 34
 H(NAE(I)) L(1024) G(NAE(I) 0,2047)
 NAIE CONTINUE
 $HID 41
 DO NAIT I=1,4 ;NAI Time ID = 41 to 44
 H(NAT(I)) L(256) G(NAT(I) 0,2047)
 NAIT CONTINUE

 EXAMPLE-2 - PRESCAN EXAMPLE SELECTING EVENTS SATISFYING 1 CONDITION --

 $NPR 18 ;SPECIFY NUMBER OF PARAMETERS
 $LPR 1 TO 2 = 64 ;SPECIFY LENGTH OF PARAMETERS 1 & 2
 $LPR 3 TO 18 = 2048 ;SPECIFY LENGTH OF PARAMETERS 3 TO 18
 $LSTL = 8192 ;SPECIFY TAPE RECORD LENGTH IN BYTES
 $BAN (256) 1 ;REQUEST FREE-FORM-GATE FROM BAN-FILE
 ;(X-LENGTH = 256, ID-NUMBER = 1)
 $BAF DCE2.BAN ;GIVE NAME OF BAN-FILE

 IFU(B(18,16 1)) 100 ;TEST X,Y-PARAMETERS (18,16) AGAINST GATE
 ;GO TO 100 IF GATE NOT SATISFIED

 CALL REPACK1 1,18 ;OTHERWISE, SAVE EVENT IN OUTPUT STREAM

 100 CONTINUE

 EXAMPLE-4 - PROGRAM USING IF-STATEMENTS, COMPUTED GOTO'S & LOOPS

 $LSTL=8192 ;TAPE RECORD LENGTH (BYTES)
 $NPR =240 ;SPECIFY # OF PARAMETERS
 $LPR 1 TO 240,1=2048 ;ASSIGN PARAMETER LENGTHS
 $LPR 219 =64 ; " " "
 $LPR 220 TO 222,1=1024 ; " " "
 $LPR 223 TO 228,1=256 ; " " "
 $LPR 229 TO 239,2=8192 ; " " "
 $DIP NAI(72),GE(6) ;DEFINE PARAMETER NAMES
 $DIP TOTH(1),TOTK(1) ; " " "
 $DIP LAMD(3),PHI(1) ; " " "
 $ASS NAI(1 TO 72)=1,3 ;ASSIGN VALUES TO NAMES
 $ASS GE(1 TO 6) =229,2 ; " " " "
 $ASS TOTH(1) =218 ; " " " "

 $ASS TOTK(1) =219 ; " " " "
 $ASS LAMD(1 TO 3)=220,1 ; " " " "
 $ASS PHI(1) =224 ; " " " "
 $GLST 64,1 1,15 16,18 19,21 22,24 25,60 ;SPECIFY SIMPLE GATE-LIST
 $H16 ;SPECIFY 16-BITS/CHANNEL
 IFS(G(TOTH(1),320,2000))10 ;TST TOTH VS SIMPLE GATE
 IFU(G(TOTK(1),1,8)) 1000 ;TST TOTK VS SIMPLE GATE
 10 DO 15 I=1,6 ;LOOP ON 6 GELI'S
 IFS(G(GE(I),1431,1440)) 20 ;TST VS GATE (1431,1440)
 15 CONTINUE
 GO TO 1000 ;RETURN IF NONE HIT

 ;TST TOTK VS GATE-LIST IN
 20 IFC(GS(TOTK(1),1,1,5))100,200,300,400,500
 ;COMPUTED GOTO
 GO TO 1000 ;RETURN IF NONE HIT

 100 H(NAI(2)) L(1024) ;FOR TOTK = 1 TO 15
 DO 110 I=3,72 ;HISTOGRAM NAI(2)-NAI(72)
 OH(NAI(I)) L(1024) ;ALL IN SAME SPACE
 110 CONTINUE
 GO TO 1000
 200 H(NAI(2)) L(1024) ;FOR TOTK = 16 TO 18
 DO 210 I=3,72
 OH(NAI(I)) L(1024)
 210 CONTINUE
 GO TO 1000
 300 H(NAI(2)) L(1024) ;FOR TOTK = 19 TO 21
 DO 310 I=3,72
 OH(NAI(I)) L(1024)
 310 CONTINUE
 GO TO 1000
 400 H(NAI(2)) L(1024) ;FOR TOTK = 22 TO 24
 DO 410 I=3,72
 OH(NAI(I)) L(1024)
 410 CONTINUE
 GO TO 1000
 500 H(NAI(2)) L(1024) ;FOR TOTK = 25 TO 60
 DO 510 I=3,72
 OH(NAI(I)) L(1024)
 510 CONTINUE
 1000 CONTINUE

 EXAMPLE-5 - PROG USING FREE-FORM-GATES, USERSUB1, RANGES, LOOPS, ETC

 $TEX PRE-SCANNED GMR DATA WITH NN SUM (3 LEVEL)

 $LSTL = 8192 ;TAPE RECORD LENGTH (BYTES)

 $NPR = 248 ;NUMBER OF PARAMETERS

 $LPR 1 TO 248,1 = 2048 ;ASSIGN PARAMETER LENGTHS
 $LPR 2 TO 215,3 = 1024 ; " " "
 $LPR 218 TO 234,1 = 8192 ; " " "
 $LPR 220 TO 235,3 = 2048 ; " " "
 $LPR 217 = 4096 ; " " "
 $LPR 239 = 1024 ; " " "
 $LPR 236 = 4096 ; " " "

 $DIP NAE(72),NAT(72),NAS(72) ;DEFINE PARAMETER NAMES
 $DIP PE(6),PDE(6),PT(6) ; " " "
 $DIP SUMH(1),FOLD(1),EMAX(1),PART(1) ; " " "
 $DIP VECP(1),COST(1),COSR(1),PHIR(1) ; " " "
 $DIP COSE(1),FFG(1) ; " " "

 $ASS NAE(1 TO 72) = 1,3 ;ASSIGN VALUES TO NAMES
 $ASS NAT(1 TO 72) = 2,3 ; " " " "
 $ASS NAS(1 TO 72) = 3,3 ; " " " "
 $ASS PE(1 TO 6) = 218,3 ; " " " "
 $ASS PDE(1 TO 6) = 219,3 ; " " " "
 $ASS PT(1 TO 6) = 220,3 ; " " " "
 $ASS SUMH(1) =236 ; " " " "
 $ASS FOLD(1) =237 ; " " " "
 $ASS EMAX(1) =238 ; " " " "
 $ASS PART(1) =239 ; " " " "
 $ASS VECP(1) =240 ; " " " "
 $ASS COST(1) =241 ; " " " "
 $ASS COSR(1) =242 ; " " " "
 $ASS PHIR(1) =243 ; " " " "
 $ASS COSE(1) =244 ; " " " "
 $ASS FFG(1) =248 ; " " " "

 $BAN (1024) 1 ;REQUEST FREE-FORM GATE
 $BAF GPOST.BAN/85 ;GIVE NAME OF BAN-FILE

 $H32 ;SPECIFY 32-BITS/CHANNEL

 H(SUMH(1)) L(512) ;SUMH SINGLES
 H(PART(1)) L(512) ;PART SINGLES

 H(PART(1),SUMH(1)) L(256,256) R(70,255 0,255) ;SUMH VS PART

 IFU(B(PART(1),SUMH(1),1)) ZIP ;TST BANANA-GATE

 CALL USERSUB1 ;CALL USERSUB1
 ;TO DO THE MAGIC

 H(NAS(2)) L(512) ;OVERLAY
 DO 50 J=3,72 ;NAS(2 THRU 72)
 OH(NAS(J)) L(512) ;BANANA-GATED
 50 CONTINUE

 H(NAE(2)) L(512) ;OVERLAY
 DO 60 J=3,72 ;NAE(2 THRU 72)
 OH(NAE(J)) L(512) ;BANANA-GATED
 60 CONTINUE

 H(PART(1),SUMH(1)) L(256,256) R(70,255 0,255) ;SUMH VS PART
 ;BANANA-GATED

 H(NAS(2) ,SUMH(1)) L(256,256) R(0,255 0,127) ;OVERLAY (2-72)
 DO 100 J=3,72 ;SUMH VS NAS
 OH(NAS(J),SUMH(1)) L(256,256) R(0,255 0,127) ;BANANA-GATED
 100 CONTINUE

 H(NAE(2) ,SUMH(1)) L(256,256) R(0,255 0,127) ;OVERLAY (2-72)
 DO 200 J=3,72 ;SUMH VS NAE
 OH(NAE(J),SUMH(1)) L(256,256) R(0,255 0,127) ;BANANA-GATED
 200 CONTINUE

 IFU(G(VECP(1),950,1023)) ZIP ;1ST GATE ON VECP
 ;IF SATISFIED,
 H(NAS(2) ,SUMH(1)) L(256,256) R(0,255 0,127) ;OVERLAY (2-72)
 DO 300 J=3,72 ;SUMH VS NAS
 OH(NAS(J),SUMH(1)) L(256,256) R(0,255 0,127) ;FOR 1ST VECP-GATE
 300 CONTINUE ;PLUS BANANA-GATE

 IFU(G(VECP(1),980,1020)) ZIP ;2ND GATE ON VECP
 ;IF SATISFIED,
 H(NAS(2) ,SUMH(1)) L(256,256) R(0,255 0,127) ;OVERLAY (2-72)
 DO 400 J=3,72 ;SUMH VS NAS
 OH(NAS(J),SUMH(1)) L(256,256) R(0,255 0,127) ;FOR 2ND VECP-GATE
 400 CONTINUE ;PLUS BANANA-GATE

 H(SUMH(1),COSR(1)) L(256,256) R(0,127 0,255) ;COSR VS SUMH
 H(SUMH(1),COST(1)) L(256,256) R(0,127 0,255) ;COST VS SUMH
 H(SUMH(1),COSE(1)) L(256,256) R(0,127 0,255) ;COSE VS SUMH
 H(SUMH(1),PHIR(1)) L(256,256) R(0,127 0,255) ;PHIR VS SUMH

 ;FOR 2ND VECP-GATE
 ;PLUS BANANA-GATE
 ZIP CONTINUE

 320.230 COMMENTS AND WARNINGS

 Warning on NPAR

 Don't set NPAR (the maximum number of parameters per event) to be less

 than it actually is in an attempt to save on unpack time or whatever. Any

 event found to contain more than NPAR parameters is trashed!

 Comment & Warning on Bit-numbering

 CHIL defines bit-numbers such that the lo-order bit is number-1 and the

 hi-order bit (of a 16-bit word) is number-16. See SEC# 320.170 for some

 examples if you are still uncertain.

 Warning on Expressions

 CHIL evaluates EXPRESSIONS left-to-right - NOT like FORTRAN. See SEC#
 320.170 for some examples.

 Warning on Banana-Gate Specifications - B(PX,PY IDA,IDB)

 At a given X-coordinate - Banana IDA+1 must lie above Banana IDA

 - Banana IDA+2 must lie above Banana IDA+1

 - Banana IDA+N must lie above Banana IDA+N-1

 This rule is made in the interest of speed. If you can't live by it, you
 will have to do your Banana gating one at a time.

 Final Comment

 CHIL hasn't really changed since the 1985 release. The documentation has

 been improved (at least modified) a bit and that is about all.

 Of course, there are a number of improvements that could be made but we

 may all be obsolete before I have time to do it. We'll see.

 250.120 BASIC INSTRUCTION LIST (BIT PATTERN) (CONTINUED)

 !2222!2111!1111!1110!0000!0000!
 !4321!0987!6543!2109!8765!4321! HEX REPRESENTATION
 ---------------- !----!----!----!----!----!----!-----------------------
 SSET # !0100!0011!1111!1111!####!####! 43FF00+#
 ! ! ! ! ! ! !
 LOAD # !0100!0011!####!####!####!####! 430000+257*#
 ! ! ! ! ! ! !
 SCLR # !0100!0011!$$$$!$$$$!0000!0000! 430000+256*$
 ! ! ! ! ! ! !
 SCMP # !0100!0011!$$$$!$$$$!####!####! 430000+256*$+#
 ! ! ! ! ! ! !
 ! ! ! ! ! ! !
 MOV #,CAX !0100!0000!####!####!####!####! 400000+#
 ! ! ! ! ! ! !
 MOV #,TXR !0101!0000!####!####!####!####! 500000+#
 ! ! ! ! ! ! !
 MOV CAX,PAT !0100!0001! ! ! ! ! 410000
 ! ! ! ! ! ! !
 MOV PAT,CAX !0100!0010!0 ! ! ! ! 420000
 ! ! ! ! ! ! !
 MOV CAX,TXR !0101!0001! ! ! ! ! 510000
 ! ! ! ! ! ! !
 MOV UCAX,CAX !0100!0010!1000!1 ! ! ! 428000
 ! ! ! ! ! ! !
 ! ! ! ! ! ! !
 MERG # !0101!1100!####! ! ! ! 5C0000+4096*#
 ! ! ! ! ! ! !
 OUT # !0101!1000!####!####!####!####! 580000+#
 ! ! ! ! ! ! !
 OUT CAX !0101!1001! ! ! ! ! 590000
 ! ! ! ! ! ! !
 OUT PAT !0101!1010! ! ! ! ! 5A0000
 ! ! ! ! ! ! !
 OUT UCAX !0101!1010!1 ! ! ! ! 5A8000
 ! ! ! ! ! ! !
 ! ! ! ! ! ! !
 DLAY # !0110!0000! !@@@@!@@@@!@@@@! 60F000+@
 ! ! ! ! ! ! !
 CLRB !0111!0000! ! ! ! ! 700000
 ! ! ! ! ! ! !
 SETB !0111!0001! ! ! ! ! 710000
 ! ! ! ! ! ! !
 BNK0 !0111!0010! ! ! ! ! 720000
 ! ! ! ! ! ! !
 BNK1 !0111!0011! ! ! ! ! 730000
 --
 (1) $ Denotes compliment of #
 (2) CAX denotes: CA, CA1, CA2, CA3, CA4 (CA is same as CA1)
 (3) EXX Denotes: EX, EX1, EX2, EX3, EX4 (EX is same as EX1)
 (EX2,EX3,EX4 used to check "Q" or "NAF BUSY" for CAMAC AUX-2,3,4)
 (4) CNAF takes same forms as NAF except that C must be given.
 (5) EX2,CA2,EX4,CA4 and C=2 or C=4 result in bit-24 being set
 (6) @@@@@ Denotes 2's compliment of ##### (i.e. negative)
 --

 250.120 BASIC INSTRUCTION LIST (BIT PATTERN) (NEW-DEAL AUX ONLY)

 !2222!2111!1111!1110!0000!0000!
 !4321!0987!6543!2109!8765!4321! HEX REPRESENTATION
 ------------------!----!----!----!----!----!----!---------------------
 SPLX !0001!0000!0000!0000!0000!0000! 100000
 ! ! ! ! ! ! !
 INCX !0001!0000!0011!1100!0000!0000! 103C00
 ! ! ! ! ! ! !
 DECX !0001!0000!0011!1110!0000!0000! 103E00
 ! ! ! ! ! ! !
 STOX M !0001!0000!0011!100M!MMMM!MMMM! 103800+M
 ! ! ! ! ! ! !
 RECX M !0001!0000!0011!101M!MMMM!MMMM! 103A00+M
 ! ! ! ! ! ! !
 --

 SPLX,INCX,DECX,STOX,RECX denotes SPL, INC, DEC, STO, REC (uses CA1)

 or SPL1,INC1,DEC1,STO1,REC1 (uses CA1)

 or SPL2,INC2,DEC2,STO2,REC2 (uses CA2)

 or SPL3,INC3,DEC3,STO3,REC3 (uses CA3)

 or SPL4,INC4,DEC4,STO4,REC4 (uses CA4)

 Use of CA2 or CA4 results in bit-24 being set.
 --

 SCAN: CHIL-BASED TAPE SCANNING

 SECTION CONTENTS

 010 INTRODUCTION

 020 USING SHARED HISTOGRAM MEMORY SEGMENTS

 030 MAXIMUM HISTOGRAM SIZE

 040 OUTLINE OF PROCEDURE

 050 SCAN LOG FILE

 060 HOW TO CREATE A CUSTOMIZED TAPE SCAN PROGRAM

 070 LOGICAL UNITS AND COMMON BLOCKS

 080 CONTROL OF THE TAPE SCANNING PROCESS

 090 USE OF COMMAND FILES

 100 PROCESSING NON-STANDARD TAPES, BYTE-SWAPPING

 110 SOMETHING IMPORTANT * * *

 U330.010 INTRODUCTION

 This document describes the use (operation only) of standard or customized

 CHIL-based tape scan programs with HHIRF standard (L002 format) list-data

 tapes as well as some non-standard data formats (see SEC# U320.100).

 See CHIL (SEC# U350.) for the following information:

 (1) General features of the CHIL system.

 (2) How to write a CHIL program - examples included.

 (3) How to write USERSUB'S and User-command-processors (USERCMP'S).

 To compile a CHIL program, Type:

 chil cfile ;For list of source & his-table on cfile.prt

 chil cfile OP,OP... ;For list on cfile.prt with OPTIONS

 Where, cfile denotes the filename of a source-file whose name-extension

 must be .chl (You don't type the ".chl" part) and:

 OP = NOT says, no HIS-table listing

 OP = NOS says, no SOURCE listing

 OP = MIL says, list the mil-code (for software developers only)

 To run the standard CHIL process, type:

 scan cfil ;if scan is defined in your .login

 ;or .cshrc files, Otherwise:

 /usr/hhirf/scan cfile ;if using a HHIRF DECstation

 ;or

 /home/upak/scan cfile ;if using a SPARCstation

 U330.020 USING SHARED HISTOGRAM MEMORY SEGMENTS

 Program scan can be requested to generate histograms in either a shared or

 a local memory segment as indicated below:

 scan name ;Starts scan using a shared memory segment (default)

 scan name local ;Starts scan using a local memory segment

 The advantage of using the shared segment is that damm can access

 histograms (in memory) as they are being generated without waiting for an

 end or a hup.

 Problems With Orphan Shared Segments

 Once upon a time there was this problem with shared memory segments. It

 seems that when a user program goes belly up, any shared memory segments

 it was using remain allocated. In time no one is able to use shared

 memory since all available memory is allocated to these orphan segments.

 The existence of this problem was documented and instructions for removing

 these shared memory segments have been provided (see Note: on shm_fixup

 below). Strangely enough, users do not alway remove their orphan segments!

 In the current implementation, a subroutine (shared_wipe) is called at the

 startup of scan which deletes orpham shared memory segments belonging to

 the current user. An orphan shared memory segment is one which meets ALL

 of the following:

 (1)....The CREATOR is the current user

 (2)....The OWNER is the current user

 (3)....The number of processes attached to this segment is zero (i.e.

 nobody is using this one).

 (4)....The process which created this segment is no longer existent.

 If all of these conditions are satisfied, the shared memory segment is

 removed.

 WARNING: This may be machine dependent. It depends on the format of the

 output from the system command 'ipcs -mcop'. So far it has worked on

 DECstations, Alphas and SUNs but we can't make any guarantees for other

 platforms or future operating systems on these platforms.

 U330.020 Using Shared Memory Segments (continued)

 THE FOLLOWING PROCEDURE SHOULD NO LONGER BE REQUIRED BUT I WILL RETAIN

 THE DOCUMENTATION FOR NOW. This only applies DECstations and Alphas.

 WARNING!! if scan should terminate abnormally (core dump), the shared

 segment will not be released as it normally would. You will need to

 perform the cleanup operation shown below, otherwise the system will

 eventually be eaten up with "abandoned memory segments".

 Type: /usr/hhirf/shm_fixup name

 Where, name is the his-file name prefix that you used in starting scan.

 IMPORTANT!!

 If you do not run shm_fixup at the time of the "abnormal termination" and

 the machine becomes almost inoperable due to the memory tied up with

 abandoned segments, do the following: Find these abandoned segments by

 displaying all files with the .shm name extension. If you find a file

 name.shm and are not currently running scanu or scan with name.his, then

 you have found an abandoned segment and should run shm_fixup as described

 above.

 Under certain conditions, abandoned segments may not have an associated

 shm-file. To find and remove these do the following.

 Type: ipcs ;To display shared mmemory segments & IDs

 Type: ipcrm -m ID ;To remove shared memory segment ID

 U330.030 MAXIMUM HISTOGRAM SIZE

 The UNIX version of SCAN generates all histograms in memory. SCAN requests

 an allocation of memory at run time, therefore, the maximum useful size is

 limited by the amount of real memory that is available or the amount that

 it will let you use. If you try to exceed this, your system may allocate

 "virtual memory" to your process - well, this is no good! Things will be

 slow as hell!

 U330.040 OUTLINE OF PROCEDURE

 (1)....Use the editor to create a chil source file (cfile.chl for example)

 where, cfile denotes any legal filename. Then type:

 chil cfile ;To compile the CHIL source program

 ;See page-1 for options

 If there are no errors, you will be informed as to how large the

 associated his-file must be (number of bytes). You don't have to

 worry about creating the his-file. If it doesn't exist it will be

 created automacially at run-time (see (2) below). Two other files

 will be created automatically at this time. These are:

 cfile.drr ;To contain the his-file directory

 cfile.mil ;To contain CHIL object code

 (2)....Now you should be ready to go, Type:

 scan cfile ;cfile.mil must exist

 ;if cfile.his does not exist, you will

 ;be prompted for permission to create it

 (3)....It will type:

 SCAN-> ;and you are off and running

 ;Don't forget to ZERO if first time thru

 (4)....If you wish to interrupt the SCAN, type:

 Ctrl/C

 (5)....It will type:

 SCAN->

 (6)....You may now type the desired command.

 U330.050 SCAN LOG FILE

 All messages (commands) typed on the VDT, read from command files or

 generated by the scan program are output to a LOG-file (LU-7) (cfile.log

 for example). See CHIL (SEC# U350.190) for a discussion of messages

 generated by user-supplied routines - how to produce, display and log

 them. Of course you don't have to do it this way - You may write directly

 to the VDT (LU-6) and/or the LOG-file (LU-7).

 U330.060 HOW TO CREATE A CUSTOMIZED TAPE SCAN PROGRAM

 (1)....Use the editor to create the desired USERSUBS, USERCMP and any

 other required routines and save all such routines on one or more

 files (sub1.f, sub2.f ... for example).

 (2)....Copy /usr/hhirf/scan.make (or /home/upak/scan.make) into your

 directory and use it as a template to construct your own customized

 make.file. This file is listed below. The portions of this file

 that you may need to replace are shown in bold faced type.

 DECstation users at HHIRF

 DIRA= /usr/hhirf/

 DIRB= /usr/users/milner/Dscan/

 OBJS= $(DIRA)scan.o $(DIRB)dummysubs.o

 LIBS= $(DIRA)scanlib.a $(DIRA)orphlib.a

 scan: $(OBJS) $(LIBS)

 f77 -O2 $(OBJS) $(LIBS) -o scan

 SUNPAK users

 DIRA= /home/upak/

 DIRB= /home/upak/milner/Dscan/

 OBJS= $(DIRA)scan.o $(DIRB)dummysubs.o

 LIBS= $(DIRA)scanlib.a $(DIRA)orphlib.a

 scan: $(OBJS) $(LIBS)

 f77 -O2 $(OBJS) $(LIBS) -o scan

 U330.070 LOGICAL UNITS AND COMMON BLOCKS

 CHIL-based SCAN programs use - LOGICAL UNITS 4,5,6,7,10,14

 CHIL-based PRESCAN progs use - LOGICAL UNITS 5,6,7,8,10,14

 User supplied routines should NOT attempt to use these LOGICAL UNITS.

 All CHIL-based tasks use COMMON BLOCK labels /AAA/ through /ZZZ/

 User supplied routines should not use these COMMON BLOCK labels .

 U330.080 CONTROL OF THE TAPE SCANNING PROCESS

 SCAN is controlled via a set of commands from the keyboard or a command

 file. When command input is needed, the SCAN-> prompt will be displayed.

 You have the following list of commands with which to respond (commands

 may be typed in upper or lower case).

 COMMAND MEANING OR ACTION TO BE TAKEN

 TAPE rxxx Assigns Tape unit rxxx (rmt0, rst0, rst1, etc) for input

 CLOT Closes tape unit but does not unload

 CLUN Closes and unloads tape unit

 UCOM TEXT Sends TEXT to USERCMP (user's command processor)

 ZERO Set the HIS-file to zero and reset all "pointers"

 ZBUC Zero the buffer counter (record counter)

 GO Start or continue processing (stops on EOF, EOM or error)

 GO N Process until N EOF's encountered (skips "bad records")

 (lists number of records skipped)

 GO N,M Process N-files or M-records - whichever comes first

 GOEN Start or continue processing - unloads tape and ends

 properly on ANY!! ABNORMAL!! TAPE!! READ!! STATUS!!

 GOEN N Start or continue processing - unloads tape and ends

 properly when N-files, DBL-EOF or EOM encountered

 GOEN N,M Process N-files or M-records - whichever comes first

 HUP Updates histogram on disk but does not terminate program

 END END "gracefully" - finish sorting (update HIS-file etc)

 KILL STOP the program immediately (do not finish sorting etc)

 REW Rewind the assigned tape unit

 BR N Backspace N-records on the assigned tape unit

 FR N Skip forward N-records on the assigned tape unit

 BF N Backspace N-files on the assigned tape unit

 FF N Skip forward N-files on the assigned tape unit

 FIND ID Find HEADER-# ID

 STX Display/log Exabyte status (MB-used, MB-left, Errors/MB)

 (currently for DECstations only)

 SWAB Request byte-swap of input data records (see 100)

 SWOF Request no byte-swap of input data records (default)

 L001 NSKIP,NPPE - Specifies non-standard input tape format (see 100)

 L002 - Specifies standard input tape format (default)

 --

 To interrupt the SCAN process, type: Ctrl/C

 --

 U330.090 USE OF COMMAND FILES

 The following commands apply only when using command files for executing

 the scan process.

 COMMAND ;MEANING OR ACTION TO BE TAKEN

 CMDF fil.cmd ;Assign fil.cmd as command file

 ;(no command is read from the file at this point)

 CCMD ;Continue - reading instructions from command file

 ;(this is how you switch to command-file control)

 CLCM ;Continue - with last command read from command file

 ;(backspaces cmd-file and reads next command)

 CCON ;Continue - reading instructions from terminal (VDT)

 ;(this is how you return control to terminal (VDT)

 MSG MESSAGE ;Display MESSAGE (44 bytes) on VDT and on LOG-file.

 --

 CONDITIONS UNDER WHICH CONTROL IS SWITCHED FROM cmd-file TO TERMINAL

 (1) A CCON command is encountered

 (2) An ILLEGAL command is encountered

 (3) A Ctrl/C is typed on the VDT (terminal)

 (4) The command-file is read to the end

 (5) A "read error" occurs (command file not assigned, for example)

 --

 U330.100 PROCESSING NON-STANDARD TAPES, BYTE SWAPPING

 The standard CHIL-based tape scan program normally expects the input tape

 structure to be in HHIRF standard (L002) format (see 1987 Handbook, SEC#

 260., HHIRF TAPES). However, provisions are made for the conversion of

 other tape formats to L002 format if the following conditions are met.

 (1)....The length of event-by-event data records to be processed must be

 different from all other records which will be encountered.

 (2)....All data records must be written in 16-bit mode. NOTE: If the

 high-order bit of a data word in the input stream is set it will be

 masked off (lost) in the converted data stream.

 (3)....Each data record must contain a fixed (integer) number of events.

 i.e. events may not be split across record boundries.

 (4)....Each event must contain a fixed number of parameters.

 (5)....Bytes may be swapped if requested.

 (6)....A specified number of data words (record header words etc) may be

 skipped at the beginning of each data record.

 You request processing of a non-standard (L001) format by entering the

 command:

 L001 NSKIP,NPPE

 Where, NSKIP denotes the number of record header words to skip before

 reading events and NPPE the number of parameters per event.

 BYTE-SWAPPING

 If bytes are to be swapped, enter the command:

 SWAB

 U330.110 SOMETHING IMPORTANT * * *

 You must terminate the SCAN with HUP, END or GOEN command in order to get

 all of your data processed onto the HIS-file.

 LEMO (List-tape Examine, Modify, Output)

 SECTION CONTENTS

 010 INTRODUCTION
 020 LIST OF COMMANDS
 030 DISCUSSION OF CERTAIN COMMANDS
 040 DISCUSSION OF COMMANDS - RELATED TO MODIFY-COPY (PRESCAN)
 050 MULTI-TAPE PROCESSING - MOCO - CONCURRENT ONLY
 060 HOW TO EXAMINE A TAPE
 070 HOW TO RESTORE EVENT HANDLER PROGRAMS TO DISK
 080 COPYING ASCII FILES TO AND FROM TAPE
 090 HOW TO CONVERT A NON-HHIRF TAPE TO HHIRF STANDARD (L002)
 100 BYTE-SWAPPING
 110 PRESCAN (MODIFY - COPY)
 120 CHIL PROGRAMMING FOR PRESCAN - EXAMPLE
 130 PRESCAN IN BRIEF
 140 HOW TO CREATE A CUSTOMIZED PRESCAN PROGRAM
 150 OPERATIONS WHICH CAN MODIFY THE DATA STREAM
 155 BUFFERED TAPE COPY OPERATIONS
 160 USER PROCESSING OF RAW EVENTS - VIA REBUF
 170 USER PROCESSING OF RAW DATA BUFFERS - VIA USERMOC
 180 COPYING EVENT-DATA FILES TO TAPE AND ADDING HEADERS
 190 LOGICAL UNITS AND COMMON BLOCKS

 Type: LEMO ;To start on CONCURRENT

 Type: @U1:[MILNER]LEMO ;To start on VAX with no LOGIN.COM entry
 Type: LEMO ;To start on VAX with LOGIN.COM entry

 Type: lemo ;To start on DECstation with .login entry

 Type: HELP ;For directory to commands

 U310.010 INTRODUCTION

 LEMO is a tape processing utility program which can be customized (via
 USERSUB, USERCMP and other support routines) to produce a prescan program.
 The stock version of LEMO can do a number of useful things: Some of these
 are:

 (1)....Any tape containing records no longer than 32768 bytes, may be
 examined (records read and displayed) and/or copied.

 (2)....Input data records may be byte-swapped for VAX compatibility.

 (3)....List data tapes recorded in HHIRF L002-format may be examined by
 reading records and displaying or printing portions thereof in
 "event format" (see SEC# U310.030).

 (4)....The text records from L002-format tapes (which normally contain the
 Event Handler program) can be restored to disk. It is then ready
 for assembly - if it ever was.

 (5)....A limited amount of prescan selection can be carried out with stock
 LEMO (see SEC# U310.110 for discussion & U310.120 for an example).

 (6)....Certain non-HHIRF tapes may be converted to HHIRF L002 format (see
 SEC# U310.090)

 (7)....The usual tape control functions (forward and backward spacing of
 records and files, rewind etc.) are provided.

 (8)....Up to three output data streams can be produced in the MODIFY COPY
 mode.

 See SEC# U350 - CHIL, for information on CHIL programming, USERSUBS
 and user COMMAND PROCESSORS for customized prescan tasks.

 See SEC# U310.150 through SEC# U310.170 for a discussion of other non-CHIL
 user-supplied customizing routines, REBUF and USERMOC.

 U310.020 LIST OF LEMO COMMANDS

 Commands for Assigning Input and Output Tapes

 IN MXXX: - Specifies tape (MXXX:) for INPUT
 OUX MYYY: - Specifies tape (MYYY:) for OUTPUT-X (X=1,3)
 MXXX:,MYYY: Denote MTL1:,MSA0:,MUB0:,rmt0:,rmt1:, etc

 Commands for Tape Control Operations

 RDI N - Read N records from INPUT
 RDOX N - Read N records from OUTPUT-X (X=1,3)

 FRI N - Forward N records on INPUT
 FROX N - Forward N records on OUTPUT-X (X=1,3)
 BRI N - Backup N records on INPUT
 BROX N - Backup N records on OUTPUT-X (X=1,3)
 FFI N - Forward N files on INPUT
 FFOX N - Forward N files on OUTPUT-X (X=1,3)
 BFI N - Backup N files on INPUT
 BFOX N - Backup N files on OUTPUT-X (X=1,3)
 RWI - Rewind INPUT
 RWOX - Rewind OUTPUT-X (X=1,3)
 BTI - Go to BOTTOM of INPUT (to DBL EOF, Backup 1 F)
 BTOX - Go to BOTTOM of OUTPUT (to DBL EOF, Backup 1 F)
 CLI - Close INPUT
 CLOX - Close OUTPUT-X (X=1,3)
 ULI - Unload and Close INPUT tape
 ULOX - Unload and Close OUTPUT-X (X=1,3)

 Commands for Data Display

 PEV IA,IB - Print 16-bit word IA thru IB in EVENT Format
 DEV IA,IB - Disp 16-bit word IA thru IB in EVENT Format
 PZ IA,IB - Print 16-bit word IA thru IB in HEX Format
 DZ IA,IB - Disp 16-bit word IA thru IB in HEX Format
 PA IA,IB - Print 16-bit word IA thru IB in ASCII Format
 DA IA,IB - Disp 16-bit word IA thru IB in ASCII Format
 PI IA,IB - Print 16-bit word IA thru IB in INTEGER Format
 DI IA,IB - Disp 16-bit word IA thru IB in INTEGER Format
 PIF IA,IB - Print 32-bit word IA thru IB in INTEGER Format
 DIF IA,IB - Disp 32-bit word IA thru IB in INTEGER Format

 Commands for Finding and Displaying Headers (Titles)

 FIND N - Find HEADER # N (does 1 BACKSPACE if found)
 DTIT - Displays next TITLE & HEADER # & BACKSPACES

 Commands for Interrupting the Process

 SEND STOP - Interrupts READ or COPY process (CONCURRENT)
 Ctrl/C - Interrupts READ or COPY process (VAX)
 END - Terminates program

 U310.020 LIST OF LEMO COMMANDS (continued)

 Commands Related to Command-file Operations

 CMDF FIL.CMD - Assign FIL.CMD as CMD-file (not read yet)
 CCMD - Continue reading CMDS from CMD-file
 CLCM - Continue with last CMD from file (backspaces)
 CCON - Continue reading CMDS from VDT (Terminal)
 MSG TEXT - Display TEXT (44 bytes) on VDT

 Commands Related to Modify_Copy

 MILF FIL.MIL - Read & process MIL-file (required for MOC)
 UCOM TEXT - Send TEXT to USERCMP
 RECO LBYT - Output-Recl-Bytes (DFLT=8192)(MOC mode only)

 SWAB - Request byte-swap of input buffers (SEC# U310.100)
 SWOF - Request no byte-swap (default)
 SHON - Says byte-swap headers once more than data
 SHOF - Says byte-swap headers & data the same way (default)

 MOC N,M - MODIFY-COPY (N-files/M-recs - 1st to occur)
 MOCO N,M - Same as MOC but waits on next INPUT or OUTPUT tapes
 - (Not supported in VAX version)
 MOCE N,M - MODIFY-COPY (END on request complete)
 INIT - Resets MODIFY-COPY INPUT & OUTPUT buffers
 ZBUC - Zero total INPUT & OUTPUT buffer counters

 Commands Related to Simple Copy Operations

 COPY N - Copy N files from INPUT to OUTPUT-1
 CREC N - Copy N records from INPUT to OUTPUT-1
 CC - Continue COPY - saves file- or record-count
 EOF - Write EOF on OUTPUT-1 (not normally needed)

 FCOP FIL.EXT - Copy FIL.EXT to OUTPUT-TAPE-1
 TCOP FIL.EXT - Copy 1 file from IN-TAPE to FIL.EXT (new file created)
 (To be used for 80 byte ASCII files only)

 Commands Related to Event-File-to-Tape Copy & Header Creation

 INFI filname - Specify input file for exam (RDI) & copy-to-tape
 HTIT TITLE - TITLE contains title for next tape header
 HNUM HN - HN specifies next tape header number to use
 HOUT - Outputs tape header and increments HN

 SHON - Says byte-swap headers once more than data
 SHOF - Says byte-swap headers & data the same way

 U310.020 LIST OF LEMO COMMANDS (continued)

 Miscellaneous and Non-standard Commands

 STEX FIL.EXT - Store text blks on FIL.EXT
 ASLU LU,FIL.EXT - Asn LU to FIL.EXT (LU=0,1,2,3,4) (CONCURRENT only)
 CLOU LU - Close LU (CONCURRENT only)

 L001 NSKIP,NPPE - Specify non-HHIRF input tape (see SEC# U310.090)
 L002 - Specify HHIRF-format input tape (default)

 Commands Related to User Processing of Raw Buffers & Events

 UPON NPRAW,RECL - Turn User-processing ON (see SEC# U310.170)
 - NPRAW = Max # of raw parameters (for user only)
 - RECL = Input data record length in bytes
 UPON - Turn User-processing ON (NPRAW=0, RECL=8192 bytes)
 UPON NPARU - Turn User-processing ON (RECL=8192 bytes)
 UPOF - Turn User-processing OFF (default)

 RBON - Enable REBUF calls (see SEC# U310.160)
 RBOF - Disable REBUF calls (default)

 U310.030 DISCUSSION OF CERTAIN COMMANDS

 FIND.....N attempts to find HEADER # N by searching forward on the INPUT
 tape (TITLES and HEADER numbers are displayed along the way): If
 found, LEMO backs up one record. If not found, LEMO will read
 past the first Double-EOF, and back up one File Mark.

 BTOX.....Advances OUTPUT-X (X=1,3) past the first Double-EOF and backs up
 one File Mark (i.e. positions properly for appending). Header
 titles and numbers are displayed along the way.

 BTI......Does the same thing for the INPUT tape.

 DEV......PEV, DA, PA, DZ, PZ, DI, PI, DIF & PIF are all commands which
 display on the terminal or list on the printer some portion of
 the last record read from tape (either the INPUT or OUTPUT). When
 you do a read (RIN or ROU), LEMO tells you how many bytes were
 read but you must specify the portion of the buffer to be
 displayed in half-words (16-bit words).

 In EVENT FORMAT (DEV or PEV), LEMO looks for a hex FFFF before
 starting to accumulate the first EVENT to be displayed.

 Therefore, the first EVENT in any record is usually not displayed
 by DEV or PEV (you can see it via DZ or PZ, however).

 COPY.....N says COPY N-files from INPUT to OUTPUT. All that is required is
 that records be no longer than 32768 bytes. File-marks are copied
 and the OUTPUT tape is always positioned between Double
 File-Marks on normal completion of a COPY request. The OUTPUT
 tape is positioned ahead of Double File-Marks on abnormal
 completion (via SEND STOP, input error, etc) of a COPY request.
 The COPY is terminated (normally) if a Double-EOF or an
 End-Of-Medium is encountered on the INPUT.

 CREC.....N says copy N-records from INPUT to OUTPUT. The same rules apply
 as for COPY except that the OUTPUT tape is always left positioned
 ahead of a Double File-Mark.

 CC.......Says continue previous COPY or CREC. It remembers how many files
 or records have already been copied and continues the count.

 U310.040 DISCUSSION OF COMMANDS - RELATED TO MODIFY-COPY (PRESCAN)

 INIT.....Resets both the EVENT- and OUTPUT-buffers. Do this if you have
 been doing some tests but are now ready to prescan for real or
 any time you wish to make a clean start.

 MOC......N,M Starts the MODIFY-COPY process, where: N is the number of
 files to process and M is the number of records to process. The
 processing terminates on either N or M - the first to be
 satisfied. The default values of N and M are 1 and 100,000,000
 respectvely.

 MOCE.....N,M Differs from the MOC-command described above only in that
 upon completion of the request, both INPUT and OUTPUT tapes are
 unloaded and the program is terminated.

 The following table summarizes the different ways in which
 processing may be terminated and the state of the OUTPUT-tape,
 OUTPUT-buffer and EVENT-buffer for each:

 TERMINATION BY--- RESULTS IN -----------------------------------

 Requested # Files Flush OUT-BUF, 2-EOF, 1-BKFIL, Scrub-EV
 EOM on INPUT Flush OUT-BUF, 2-EOF, 1-BKFIL, Scrub-EV
 Requested # Recs Flush OUT-BUF, 2-EOF, 2-BKFIL, Save-EV
 SEND STOP 2-EOF, 2-BKFIL, Save-EV
 Input Error Flush OUT-BUF, 2-EOF, 2-BKFIL, Scrub-EV

 MOCE Flush OUT-BUF, 2-EOF, Unload Tapes, EXIT

 Where, Scrub-EV indicates that any partial-event which has not
 been fully processed will be deleted from the EVENT-buffer and
 Save-EV means that any partial-event will be retained for
 subsequent MOC requests.

 NOTE: Processing is always terminated with two File-Marks being
 written on all OUTPUT tapes.

 U310.050 MULTI-TAPE PROCESSING - MOCO - CONCURRENT ONLY

 The MOCO command is intended to make it easier for a novice (or at least
 someone not familiar with your process) to change tapes for you. MOCO
 means MODIFY-COPY & CONTINUE (waits for input & output tapes to be
 mounted).

 THIS IS HOW IT WORKS

 When intervention is required, by the requested number of files being read
 from the input (or DBL-EOF or EOM encountered) or EOM detected on the
 output, the program will:

 (1) Unload the tape which must be replaced (TELEX drives only),

 (2) Type: WAITING FOR INPUT (or OUTPUT) TAPE,

 (3) Try to read/write input/output tapes (trying every 2 sec),

 (4) and flash the light on top of the drive.

 As soon as another tape is mounted and made ready, the program will:

 (1) Read/write one record from/on the new tape,

 (2) Rewind the new tape,

 (3) Turn off the flasher,

 (4) and read the next command - normally from a command file.

 If the next command read from the command file is another MOCO, MOCE, etc,
 it will process the tape without anything being typed on the VDT. If the
 command file contains a long list of MOCO's, the process will continue
 until you run out of tapes or the tape drive screws up.

 A reasonable command file might look like:

 MOCO 100 ;Says process tape to end & wait for next
 MOCO 100
 -
 -
 MOCE 100 ;Process last tape and end

 U310.050 MULTI-TAPE PROCESSING - MOCO - CONCURRENT ONLY (continued)

 SUGGESTIONS

 (1)....Set up a command file to process a certain number of tapes and then
 end gracefully.

 (2)....Turn the FLIP-SIGN on top of the tape drive to the card which says
 NEXT TAPE WILL BE PROCESSED IN 10 SECONDS

 (3)....Fill out and attach one of the FLIP-SIGN labels provided.

 (4)....Carefully stack tapes to be processed in front of the appropriate
 tape drive in the space labeled TAPES TO DO.

 (5)....Finished tapes should be stacked in the TAPES DONE space.

 (5)....Start processing with LEMO.

 When a flasher is observed to be active (blinking), do the following:

 (1)....Remove the processed tape and place it on the TAPES DONE stack.

 (2)....Load next tape from the TAPES TO DO stack and set it ON LINE.

 WHAT IF'S

 If....the drive drops ready on rewind but the light is blinking, things
 should proceed normally - once you get the old tape unloaded & the
 next tape mounted and on line.

 If....the tape runs off the end but the light is blinking, things should
 proceed normally when you finally get the next tape loaded.

 If....the drive becomes unavailable (for any reason) and the light is NOT
 blinking, VDT intervention will be required.

 !!! CAUTIONS !!!

 Don't try to use a BLINKING drive for anything except to process the next
 tape from the TAPES TO DO stack.

 If you have to unload the tape manually (because of drive malfunction,
 etc), be carefull NOT to put the old tape ON LINE because the program may
 start to process it AGAIN! before you have time to press the RESET button.

 U310.060 HOW TO EXAMINE A TAPE

 (1) Place the tape of interest on some tape drive.
 (2) Type: LEMO
 (3) Type: HELP

 You can probably figure out what to do.

 U310.070 HOW TO RESTORE EVENT HANDLER PROGRAMS TO DISK

 Position the INPUT tape such that the Header containing the program of
 interest is the next one to be encountered (via FIND for example). If the
 desired program is contained in the first Header on the tape, type:

 RWI ;Rewinds the INPUT tape

 STEX FILNAM.EVS ;The extension .EVS is required by ADAC

 Where, FILNAM.EVS is the file on which the program is to be stored.
 FILNAM.EVS must not already exist. If you wish to restore the program
 contained in Header # N, Type:

 FIND N ;Finds Header # N

 When (and if) the requested Header is found, Type:

 STEX FILNAM.EVS

 U310.080 COPYING ASCII FILES TO AND FROM TAPE

 LEMO may be used to write and read ASCII tapes for transfer to and from
 other computers. The following commands are used:

 FCOP FILENAME ;Copies FILENAME to OUTPUT-TAPE-1 (previously opened)
 ;Variable length records from FILNAME are de-tabbed and
 ;written as fixed length (80 byte) records on tape.

 ;(DEC's rules for FORTRAN tabs are used in de-tabbing)

 TCOP FILENAME ;Copies 1 file from INPUT-TAPE to FILENAME (created)
 ;Fixed length (80 byte) records from tape are
 ;written as variable length records on FILENAME.

 U310.090 HOW TO CONVERT A NON-HHIRF TAPE TO HHIRF STANDARD (L002)

 Certain non-standard tapes may be converted to L002 format under the
 MODIFY - COPY mode if the following conditions are met:

 (1)....The length of event-by-event data records to be processed must be
 different from all other records which will be encountered.

 (2)....All data records must be written in 16-bit mode.

 (3)....If the high-order bit of a data word in the input stream is set it
 will be masked off (lost) in the converted data stream.

 (4)....Each data record must contain a fixed (integer) number of events.
 i.e. events may not be split across record boundries.

 (5)....Each event must contain a fixed number of parameters.

 (6)....Bytes may be swapped if requested.

 (7)....A specified number of data words (record header words etc) may be
 skipped at the beginning of each data record.

 Request processing of a non-standard (L001) format by typing:

 L001 NSKIP,NPPE

 Where, NSKIP denotes the number of record header words to skip before
 reading events and NPPE the number of parameters per event. If bytes are
 to be swapped and/or an output record length other than 8192 bytes is
 desired, use the following commands:

 SWAB ;Requests byte-swap of input records
 RECO NBYTS ;Specifies that the output record length is to be NBYTS

 A simple CHIL program of the following form will be required:

 $LSTL = RECL ;Specify tape record length (bytes)
 $NPR = NPAR ;Specify # parameters per EVENT (NPAR)
 ;Must include any calculated parameters

 CALL USERSUB1 ;Use only if parameters are to be modified
 ;or created
 CALL REPACK1 1,NPAR ;Request that all parameters be saved

 (See SEC# U310.130 for additional information on MODIFY-COPY operation)

 U310.100 BYTE-SWAPPING

 The command SWAB causes the following byte-swapping actions:

 (1)....For L002 input, swaps bytes for all input records (appropriately)
 in both COPY and MOC modes.

 (2)....For L001 input, swaps bytes of all input records (assuming 16-bit
 integers) in the COPY mode.

 (3)....For L001 input, swaps bytes of data records only in MOC mode.

 Under some circumstances, you may need to byte-swap the data and not the
 headers or vice versa. In such cases, the command SHON turns on an
 additional byte-swap for the header only. SHOF turns it off and is the
 default.

 U310.110 PRESCAN (MODIFY - COPY)

 Pre-Scanning (as interpreted here) involves the processing of an INPUT
 data stream (from Mag Tape) to produce an OUTPUT data stream (to Mag
 Tape). The processing may include selection of certain events, selection
 of certain parameters, modification of input parameters or creation of new
 parameters or any combination of the preceding.

 A CHIL-based prescan task involves the use of LEMO (or a customized
 version thereof) to control the process combined with a CHIL program which
 aides in the selection of events and/or parameters. Modification or
 creation of parameters will normally require one or more user-supplied
 subroutines USERSUBS.

 The CHIL-based prescan program may include any legal CHIL statement except
 for the H-statement (i.e. concurrent histogramming is not supported). The
 CALL REPACK1 (not legal in histogramming programs) is used to initiate the
 "saving of an event" into the output data stream.

 In the MODIFY-COPY mode, records are read from the input tape, events are
 expanded and passed (one at a time) to the USERSUBS.

 Input records which are not of the length specified in the CHIL program

 ($LSTL-Statement) are simply copied to all output tapes, thus, Headers are
 copied automatically. If the record length and/or the Max # of Parms for
 the output tape is specified differently from the input, the primary
 Header is modified appropriately.

 If an End-of-Medium is encountered on an output tape and the recording is
 continued on a new tape, only the primary header (not the text blocks
 containing the Event Handler program etc) will be reproduced on the
 continuation tape.

 U310.120 CHIL PROGRAMMING FOR PRESCAN - EXAMPLE

 Prescan program which selects only those EVENTS for which parameters 18
 and 16 satisfy Free-Form-Gate number-1 from file DEC2.BAN. If gate is
 satisfied, all parameters of event are saved.

 $LSTL = 8192 ;Specify tape record length in bytes

 $NPR 18 ;Specify number of parameters

 $LPR 1 TO 2 = 64 ;Specify length of parameters 1 & 2
 $LPR 3 TO 18 = 2048 ;Specify length of parameters 3 to 18

 $BAN (256) 1 ;Request Free-Form-Gate from BAN-file
 ;(X-length = 256, ID-number = 1)

 $BAF DCE2.BAN ;Give name of BAN-file

 IFU(B(18,16 1)) 100 ;Test X,Y-parameters (18,16) against gate
 ;Skip it if gate not satisfied

 CALL REPACK1 1,18 ;otherwise, save EVENT in output stream
 ; 1 is lowest Parameter-# to save
 ;18 is highest Parameter-# to save

 100 CONTINUE

 U310.130 PRESCAN IN BRIEF

 Create your CHIL program and save in file PRESCAN.CHL, for example.

 Type: CHIL PRESCAN

 Type: DEL PRESCAN.DIR ;For CONCURRENT

 Type: DEL PRESCAN.DRR;* ;For VAX

 Don't create a HIS-file

 Type: LEMO

 Type: IN MXXX: ;MXXX: denotes Input Tape Unit

 Type: OU1 MYYY: ;MYYY: denotes Output Tape Unit

 Type: MILF PRESCAN.MIL ;Reads & processes MIL-file

 Type: MOC ;Starts processing

 End-of-File or End-of-Medium on Input Tape

 When an EOF or EOM is encountered on the input tape, LEMO writes any
 partially filled output buffer and two File Marks onto all output tapes
 and backs up one File Mark. To continue with the next input file, type the
 command MOC. To continue with the next input tape, type RWI, mount next
 input tape and type MOC.

 End-of-Medium on Output Tape

 When an EOM is encountered on the output tape, LEMO backs up one record,
 writes a File Mark, rewinds the output, instructs you to mount a new tape,
 and pauses. When you type: CONTINUE, LEMO writes the primary header (not
 the text blocks) and the last output record (the one it was writing when it
 hit EOM) onto the new tape, and continues processing.

 See SEC# U310.040 for more information on termination of processing.

 U310.140 HOW TO CREATE A CUSTOMIZED PRESCAN PROGRAM

 For CONCURRENT System

 (1)....Use the editor to create the desired USERSUB, USERCMP and other
 required routines and save all such routines on one file
 (MYRUTS.FTN for example).

 (2)....Compile these routines to obtain an object file (MYRUTS.OBJ for
 example) by typing:

 F7D MYRUTS ;For a non-optimize compilation while de-bugging

 or
 F7O MYRUTS ;For an optimized compilation after de-bugging

 (3)....Link your routines with the "main package" by typing:

 LEMOLNK MYRUTS,MYLEMO ;To produce a customized task

 Where, MYLEMO denotes any legal filename prefix (up to 8 characters) for
 the task file to be produced. The following CSS procedure loads and starts
 MYLEMO.

 L MYLEMO
 AS 5,CON: ; AS 6,PR: ; AS 9,CON:
 AS 8,LEMO.HEP/S
 ST
 $EXIT

 For the VAX

 (1)....Use the editor to create the desired USERSUBS, USERCMP and any
 other required routines and save all such routines on one or more
 files (F1.FOR, F2.FOR .. for example).

 (2)....Compile these routines to obtain associated object files by typing:

 FOR F1 ;To compile F1
 FOR F2 ;To compile F2 etc.

 (3)....LINK your routines with the MAIN PACKAGE by typing:

 LEMOLNK "F1,F2,.." MYLEMO ;To produce EXE-file MYLEMO

 (4)....Copy the COM-file LEMO.COM to MYLEMO.COM and replace the line:

 RUN LEMO with RUN MYLEMO

 U310.140 HOW TO CREATE A CUSTOMIZED PRESCAN PROGRAM (continued)

 Assume that your username is userdoe and your customizing routines are in
 your directory Dlemosubs and there are two files to be included, subsa and
 subsb and you wish to produce a program mylemo. Copy the template file
 into your directory and create a make file mylemo.make by changing the
 template file as/where indicated by the bold face type. The generic result
 is shown below.

 DIRA= /usr/hhirf/
 DIRB= /usr/users/userdoe/Dlemosubs/
 OBJS= $(DIRA)lemo.o $(DIRB)subsa.o $(DIRB)subsb.o
 LIBS= $(DIRA)lemolib.a $(DIRA)milib.a $(DIRA)jblibf1.a $(DIRA)jblibc1.a
 mylemo: $(OBJS) $(LIBS)
 f77 -O2 $(OBJS) $(LIBS) -o mylemo

 U310.150 OPERATIONS WHICH CAN MODIFY THE DATA STREAM

 When running in the modify-copy (MOC) mode, one or more of the following
 operations may be initiated which can result in the modification of the
 data stream. Operations are listed in the order that they will be carried
 out if requested. The column headed CMD gives the run-time LEMO command
 which requests the associated operation.

 CMD OPERATION---

 SWAB...Swap bytes in data buffers (also HHIRF headers) (see SEC# U310.100).

 L001...Convert data buffers from L001 to L002 format (see SEC# U310.090).

 RBON...Call user-supplied routine BUFMAN event-by-event (see SEC#
 U310.160).

 UPOF...Process & output buffers via CHIL, USERSUBs (see SEC# U310.120).
 This is the default.

 UPON...Process buffers via user-supplied routine USERMOC (see SEC#
 U310.170). After the new output buffer is constructed, USERMOC must
 do one of the following:

 (1)...Output buffers directly by calling routine UPVALL or:

 (2)...Process and output buffers via CHIL, USERSUBs, etc. by
 calling routine PVALL.

 Note: A CHIL program is not required unless PVALL is called by
 USERMOC. Thus, in the UPON, UPVALL mode, the user can do anything he
 feels like with the data. Output buffers do not have to be L002 or
 anything in particular.

 U310.155 BUFFERED TAPE COPY OPERATIONS

 The simple tape copy executed via the COPY or CREC commands is not
 buffered (i.e. input and output does not proceed simultaneously). However,
 you can use the MOC command with UPON and the default USERMOC routine
 (which just copies buffers) to achieve a double buffered copy operation.
 This should run at approximately twice the speed of the simple COPY.

 U310.160 USER PROCESSING OF RAW EVENTS - VIA REBUF

 LEMO provides (via a user-supplied routine REBUF) the user with the means
 to access and modify the raw event-data prior to any subsequent CHIL or
 user-processing (USERMOC) action. If REBUF is enabled, the following
 operations occur.

 (1)....Buffers (records) are read from the input tape.

 (2)....Input buffers are scanned for events (number sequences ending in
 hex-FFFF) and one raw event per call is passed to REBUF. Events
 which are split across records are taken care of.

 (3)....REBUF produces a new output data stream by storing new packed
 events (including the FFFF) into an INTEGER*2 array NULIST.

 (4)....The new data stream (in NULIST) is then passed to the usual
 unpacking and CHIL processing, including USERSUB calls etc.

 CHIL only sees the data and number of parameters in NULIST - it doesn't
 know that there was a REBUF operation. $LSTL (in the CHIL program) is used
 by the tape reading routine and is unchanged.

 Type: RBON ;At run time to enable REBUF calls
 Type: RBOF ;At run time to disable REBUF calls (default)

 C ---
 C A do-nothing REBUF routine which just copies PBUF to NULIST
 C
 C PBUF - contains raw packed event (the FFFF is not included)
 C NP = number of words in PBUF
 C NULIST - is the new output buffer which you load
 C NN = number of words loaded into output buffer
 C LEMO resets NN to zero whenever a buffer is processed
 C ---
 SUBROUTINE REBUF(PBUF,NP,NULIST,NN)
 INTEGER*2 NULIST(16384),PBUF(2000)
 DO 10 I=1,NP
 NN=NN+1
 NULIST(NN)=PBUF(I)

 10 CONTINUE
 NN=NN+1
 NULIST(NN)=X'FFFF' !You must supply the end-of-event FFFF
 RETURN
 END
 Important Comment

 If you think that you may significantly increase the abount of data (in
 going from input to output), I may need to know about it. I have shown the
 dimensions of PBUF and NULIST to be that defined in the main program.
 NULIST is dimensioned to 4 times the usual input record size of 8192 bytes.
 LEMO does not check the fullness of NULIST on an event-by-event basis but
 processes NULIST after each input buffer is massaged into it. As things
 stand, you would be able to expand the input data by almost a factor of 4
 (for 8192 byte input records) - beyond that, you blow the program!!

 U310.170 USER PROCESSING OF RAW DATA BUFFERS - VIA USERMOC

 VAX and DECstation versions of LEMO provide users with the means (via a
 user-supplied routine USERMOC) to do the following:

 (1)....Process raw input buffers into new buffers and subsequently call
 UPVALL which can generates (1 to 3) output data streams to tape
 with no CHIL involvment.

 (2)....Process raw input buffers into new buffers and subsequently call
 the standard CHIL processor, PVALL, which then imposes any CHIL
 conditions and generates output data streams to tape.

 At run time, calls to USERMOC are enabled/disabled as follows:

 UPON ;Enable calling of USERMOC (NPRAW=0, RECL=8192 bytes)
 UPON NPRAW ;Enable calling of USERMOC (RECL=8192 bytes)
 UPON NPRAW,RECL ;Enable calling of USERMOC
 ;NPRAW = Max # raw parms (for USERMOC if needed)
 ;RECL = Input record length (bytes) if not 8192

 UPOF ;Disables USERMOC calls (enables PVALL calls - default)

 The following USERMOC illustrations do nothing except to copy the input
 buffer INBUF into an output buffer OUBUF with no modification. The first
 illustration calls UPVALL to output into stream-1 while second calls PVALL
 for subsequent CHIL processing and output.

 SUBROUTINE USERMOC(INBUF,NWDS) ;Illustration-1

 C ;default USERMOC
 INTEGER*2 INBUF(*),OUBUF(16384) ;NWDS=#words in INBUF
 C
 DO 10 I=1,NWDS ;Loop on # words in input buffer
 OUBUF(I)=INBUF(I) ;Set output = input
 10 CONTINUE
 ISTREAM=1 ;Specify output stream-1
 C
 CALL UPVALL(OUBUF,NWDS,ISTREAM) ;Call UPVALL to handle output
 C ;NWDS = # of words in OUBUF
 RETURN ;and return
 END

 SUBROUTINE USERMOC(INBUF,NWDS) ;Illustration-2
 C ;NWDS = # of words in INBUF
 INTEGER*2 INBUF(*),OUBUF(16384) ;Buffer dimensions
 C
 DO 10 I=1,NWDS ;Loop on # words in input buffer
 OUBUF(I)=INBUF(I) ;Set output = input
 10 CONTINUE
 C
 CALL PVALL(OUBUF,NWDS) ;Call PVALL for CHIL processing &
 C ;output (CHIL specifies stream-#)
 RETURN ;NWDS = # of words in OUBUF
 END

 U310.180 COPYING EVENT-DATA FILES TO TAPE AND ADDING HEADERS

 The DECstation version of lemo accomodates the examining and copying of
 disk-files containing event-list data. This feature is intended to be an
 aid to those doing simulations on the DECstations. The following commands
 are available:

 INFI filname - Specify input file for exam (RDI, DEV) & copy-to-tape
 HTIT TITLE - TITLE contains title for next tape header
 HNUM HN - HN specifies next tape header number to use
 HOUT - Outputs tape header and increments HN

 In addition, an example program found in /usr/users/milner/Develx/evelx.f
 contains routines for opening an event-file (EVELOPEN) and for writing
 data to it (EVELOUT). The "simulator" might (or might not) wish to include
 these routines in his simulation source code. Feel free to copy evelx.f to
 your directory for examination etc. The routines are internally documented.

 The idea is this:

 (1)....You do your simulations and write the generated events to a disk
 file.

 (2)....You may then use lemo to examine this file (read, display in
 event-format, etc).

 (2)....You may also specify a tape header number and title, output the
 header to tape and finally copy the entire file to tape via the
 normal copy command.

 An typical file-to-tape copy session might look as follows:

 lemo>infi eventfile.dat ;open event-file for input
 lemo>ou rmt1: ;open rmt1: for output
 lemo>htit simulation-3 no-gates ;title for tape header
 lemo>hnum 3 ;next header number on tape
 lemo>hout ;output the header to tape
 lemo>copy 1 ;copy 1-file input-to-output
 lemo>end ;end program

 NOTE: You can also use the header setup and output feature (hnum, htit &
 hout commands) to add headers while copying one tape to another. There is
 no provision, however, to delete or modify existing headers.

 U310.190 LOGICAL UNITS AND COMMON BLOCKS

 CHIL-based PRESCAN programs may use - LOGICAL UNITS 5 thru 14
 User supplied routines should NOT attempt to use these LOGICAL UNITS.
 All CHIL-based tasks may use COMMON BLOCK labels /AAA/ through /ZZZ/
 LEMO also uses /INNARDS/ and /ULOCA/
 User supplied routines should not use these COMMON BLOCK labels .

 DAMM – Display and Manipulation Programm

 Section Contents

 010 GENERAL - Introduction and General Features
 020 GENERAL - Getting Started
 030 GENERAL - Assigning Input/Output Files
 040 GENERAL - Loop-Execution & Symbol-Definition
 050 GENERAL - Log File - damm.log
 060 GENERAL - Comments on Hard Copy
 070 GENERAL - File ID-directories and Count-Sums
 090 GENERAL - Cursor Tracking Problems With Xterminals
 100 GENERAL - Changes in Cursor-Mode Commands
 110 GENERAL - Mouse Button Customizing
 120 GENERAL - Screen Setup and Color Mapping
 130 GENERAL - Display Delays (hangup problems)
 150 DISPLAY - 1-D Display
 155 DISPLAY - 1-D Display (Peak Finding/Logging)
 160 DISPLAY - 2-D Display
 200 MANIPULATION - Syntax Definitions
 210 MANIPULATION - Setup
 220 MANIPULATION - I/O 1-D Histograms
 230 MANIPULATION - Gating 2-D Histograms
 240 MANIPULATION - General 2-D Projections
 250 MANIPULATION - Operations on Buffers-1 & -2
 260 MANIPULATION - Show Data, Count-Sums etc (from Bufs-1 & -2)
 270 MANIPULATION - Modify Buffer Contents
 280 MANIPULATION - Printer Plots
 290 MANIPULATION - Gain-Shifts & Compressions
 300 MANIPULATION - of HIS-files (Copy, Add, Gain-Shift, etc)
 350 BANANAS - Definition, Rules, Construction & Display
 360 BANANAS - Projections
 400 FITTING - Introduction & General Features
 410 FITTING - 1-Key (Cursor Mode) Commands
 420 FITTING - Setup Commands
 430 FITTING - Display of Data, Fits & Printer-Plots
 440 FITTING - FIT Execution Commands
 450 FITTING - FIT Parameters - Saving, Setting, Default
 460 FITTING - FIT Specification Details
 470 FITTING - Peak Shapes
 480 FITTING - Gradient-Search Method (FIT request)
 490 FITTING - Gaussian Method (GFIT request)
 500 FITTING - Estimated Uncertainties in Peak Areas
 510 FITTING - Reading Fit Results from damm.log

 520 FITTING - Common Problems
 530 FITTING - Peak Shape vs Asymmetry (Log Plot)
 550 CUSTOMIZING - Screen Configuration
 560 CUSTOMIZING - Graphic Screen Color Mapping
 570 CUSTOMIZING - Graphic Screen Black & White Mapping
 600 Implementation
 700 Gating 2D Matrix With the Cursor (RVR)

 U300.010 Introduction and General Features

 DAMM is a Display, Analysis and Manipulation Module which is configured to
 be used on VAXstations running VMS and DECwindows. DAMM provides the
 features to be found in VAXPAK programs DAM, SAM, TDX and XAM. Some
 general features are listed below.

 Display features ..

 (1)....Works with VAXstations and DECstations running DECwindows.

 (2)....Displays 1-D data from HIS- or SPK-files.

 (3)....Displays 2-D data from HIS-files.

 (4)....Hardcopy available via screen-copy to LN03, LN03 ScriptPrinter

 (5)....A dialog record may be saved on a Log-file.

 (6)....Supports Free-Form (Banana) gate construction.

 (7)....Provides for total number of counts within a Banana.

 (8)....Supports X- & Y-projections of Bananas (saved on DAMQ8Q.SPK).

 (9)....Provides for peak sum, centroid and fwhm.

 (10)...Provides for spectrum analysis (fitting - see SEC# U300.400).

 General features ..

 (1)....Reads 1-D histograms from either HIS-, SPK-files.

 (2)....Extracts GATES (on parameters 1 or 2) from 2-D histograms.

 (3)....Supports general projections of Bananas on arbitrary axis.

 (4)....Forms linear combinations, gain-shifts etc. of 1-D histograms.

 (5)....Forms linear combinations, gain-shifts etc. of 2-D histograms.

 (6)....Does linear gain and intercept transformations by rebinning.

 (7)....Does crunches (sums a specified number of channels together).

 (8)....Lists and plots 1-D histograms on the line printer.

 (9)....Shows directory (ID'S) contained in HIS-, SPK- & BAN-files.

 (10)...Shows count-sums for all ID's in SPK- or HIS-files.

 Program operation ...

 The program is controlled by a set of commands (alphabetic directives) and
 associated data-lists (numbers): I call these command-lists. Input is
 free-form. Command and list-element delimiters are BLANK , () /

 U300.020 GETTING STARTED

 The steps given below outline how I would do it. Of course, you can do it
 any way that you choose or not at all.

 (1)....Log onto DECstation, VAXstation, Xterminal, etc. in the usual
 manner.

 (2)....Open a DECterm window and move it to the lower left corner of
 screen.

 (3)....Type: @U1:[MILNER.XWIN]DAMM ;to start program on a VMS host
 or: DAMM ;if defined in LOGIN.COM

 Type: /usr/hhirf/damm ;to start program on an ULTRIX host
 or: damm ;if defined in your .login

 (4)....Type: H ;for HELP directory
 (5)....Type: H ITEM ;for help on directory ITEM
 (6)....Type: H FIG ;for screen configurations

 (7)....Try a few FIG commands to get a feel for how they work.

 (8)....Note the fact that the display required for entering fitting
 information (like peak positions, etc) is via the DS & DSX commands

 rather than the general display commands D & DX.

 (9)....Learn to use the HELP facility. That will usually be more
 up-to-date than this document.

 (10)...Filenames have been made case-sensitive for the ULTRIX version.
 Where default extensions apply, upper case is assumed for VMS and
 lower case is assumed for ULTRIX. Acceptable standard extensions
 now include .spk, .SPK, .his, .HIS, .ban, .BAN, .cmd & .CMD. Note:
 If the his-file extension is lower/upper case then the drr-file
 extension must be lower/upper case. Also note:

 /usr/users/directory/subdirectory/filename ;is an acceptable form but

 ../directory/subdirectory/filename ;is NOT! (at least for now)

 U300.030 Commands for Assigning Input/Output Files

 IN FIL.EXT - Open N-file (EXT = SPK or HIS)
 OU FIL.EXT - Open O-file (EXT = SPK or HIS) - OUTPUT for SPK only
 OU FIL.SPK,NEW- Create and open O-file (SPK-file for output)
 QF FIL.EXT - Open Q-file (EXT = SPK or HIS) - for display only
 RF FIL.EXT - Open R-file (EXT = SPK or HIS) - for display only
 SF FIL.EXT - Open S-file (EXT = SPK or HIS) - for display only
 BAN FIL - Open FIL.BAN for store, recall, proj, etc
 BAN FIL,NEW - Create & open FIL.BAN for store, recall, etc
 - (See below for how to specify variable FILENAMES)
 CLO F - Closes F-file (where F = N, O, P, Q, R, S or BAN)
 DFIL - Displays data files currently open

 CMD FIL - Open and process commands from FIL.CMD
 CMD FIL.EXT - Open and process commands from FIL.EXT

 LON/LOF - Turn Log-output (to LU7) ON/OFF (default = OFF)

 Explanation of variables in FILENAMES

 One symbol (integer variable) may be incorporated in a FILENAME
 specification as the following examples illustrate:

 Example-1 ...
 SYM=3
 OU FIL"SYM".SPK ;Opens FIL3.SPK

 Example-2 ...
 I=0

 LOOP 3
 I=I+1
 IN FIL"I".SPK ;Opens (in succession) FIL1.SPK, FIL2.SPK, FIL3.SPK
 .
 ENDLOOP

 U300.040 Commands Related to Loop-Execution & Symbol-Definition

 SYM = EXPRESSION - Define symbol (SYM) up to 100 symbols supported
 - symbols: UIND CIND ULOC CLOC FIX NONE FITS ALL and
 - COLR GREY DOTS LIVE BAN M N O P Q R S are reserved
 - expression syntax is same as in CHIL
 - no imbedded blanks are allowed in expressions
 - symbols may contain up to 4 characters (5-8 ignored)
 DSYM - Displays list of currently defined sumbols & values
 LOOP N - Starts LOOP (executed N-times) N=SYM or CONST
 CMD - Nesting supported
 CMD - # lines between 1st LOOP & matching ENDL = 100
 ENDL - Defines end-of-loop
 - KILL (entered before END) kills LOOP
 - Ctrl/C - aborts loop-in-progress
 - opening of CMD-file within a LOOP not allowed

 LOOP suspension - the WO command --

 A command WO [means the same thing as WOA or WHOA - i.e the opposite of
 GIDDUP (my preferred spellings)] has been implemented to work within LOOPs.
 Whenever the WO command is encountered (within a LOOP only, otherwise it's
 illegal), the message:

 Type [RETURN] to CONTINUE--->

 will appear on the screen. This gives you an opportunity to look at the
 display etc. before it gets wiped out. When you are finished looking,
 press the [RETURN] key and it will continue.

 U300.050 Log File - damm.log

 The VMS version of DAMM always creates a new version of DAMM.LOG while the
 ULTRIX version creates a new damm.log or appends to an old version of
 damm.log if it exists. If you enter the command LON, almost all dialog to
 and from the host will be logged, otherwise, only certain "print commands"
 will produce output to the log-file or device. You may turn the log ON/OFF
 by entering LON/LOF.

 U300.060 Comments on Hard Copy

 As I have defined the default the color mapping, it is best to set up the
 Workstation to Print Screen in the negative image mode. If you are printing
 on something like a LN03 ScriptPrinter, anything you chose to print will
 be scaled to fit on one page. If you are using an LN03, it may come out on
 multiple pages (and you may miss some) unless you choose a "Portion of
 Screen" that it likes.

 U300.070 File ID-directories and Count-Sums

 DIR KF Displays a list of all ID's in file-KF, where
 KF left blank says input-file
 KF = N denotes input-file
 KF = O denotes output-file
 KF = Q denotes Q-file
 KF = R denotes R-file
 KF = S denotes S-file
 KF = BAN denotes BAN-file

 LDIR KF Logs a list of all ID's in file-KF on DAMM.LOG

 DDIR KF Displays ID's & # of non-zero channels for SPK-files
 DDIR KF Displays ID-directory in detail for HIS-files
 Also logs on DAMM.LOG if LON

 DSUM KF Displays count-sums of all ID's on file-KF
 Also logs on DAMM.LOG if LON

 U300.090 Cursor Tracking Problems With Xterminals

 The software-generated full-window cursor displayed by DAMM when in the
 "1-key cursor mode" requires a lot of real-time response from the host
 computer for live tracking of the mouse. This works fine when the host is
 a local workstation but does not work well for Xterminals hosted by a busy
 VAX. The following commands are intended to alleviate this problem. Type:

 CURT LIVE ;for full-window cursor which tracks mouse "live" (default)

 CURT X ;for new cursor display only for mouse-click or key-press
 ;(works better for Xterminals hosted by busy VAX, etc.)

 Execute the desired CURT command and then FIG to make it take effect.

 U300.100 Changes in Cursor-Mode Commands

 I have eliminated the destinction between upper and lower case in all

 cursor-mode commands. The Shift- and Caps-lock keys have no effect. In
 order to do this and retain meaningful command names, it was neccessary to
 use two keys for certain commands. These commands (UP, UX, UW, UL, UH, UO,
 and UB) are defined below:

 P/UP Add/Delete peak to Library (pos specified by cursor)
 X/UX Fix/Free peak position (for displayed peak nearest to cursor)
 W/UW Fix/Free peak width (for displayed peak nearest to cursor)
 L/UL Fix/Free Lo-Side ASYM (for displayed peak nearest to cursor)
 H/UH Fix/Free Hi-Side ASYM (for displayed peak nearest to cursor)
 O/UO Turn peak ON/OFF (for displayed peak nearest to cursor)
 B/UB Add/Delete background point at cursor position

 Read UP as Unset Peak, for example. As usual, no carriage return is used.
 There are also a few other changes in commands. These are listed below:
 LF-ARROW Set expand-region lo-limit
 RT-ARROW Set expand-region hi-limit
 DN-ARROW Pan DOWN - move picture so cursor-chan at right-screen
 UP-ARROW Pan UP - move picture so cursor-chan at left-screen
 / Display XCUR, YCUR, channel# & energy

 U300.110 Mouse Button Customizing

 The Mouse Buttons can be used in place of some key-strokes while in the
 1-key cursor-mode. Different button definitions are provided for the three
 different types of displays (namely: the displays resulting from the
 commands D, DD & DS). The following customizing commands are supported:
 BUD L,M,R ;Defines Left,Middle,Right buttons for cursor in D-window
 BUDD L,M,R ;Defines Left,Middle,Right buttons for cursor in DD-window
 BUDS L,M,R ;defines Left,Middle,Right buttons for cursor in DS-window
 BUD L,H,S ;Example (cursor in 1-D) L-butt sets sum-reg lo-limit,
 ;M-butt sets sum-reg hi-limit, R-butt requests S-sum
 BUDD A,T,Z ;Example (cursor in 2-D) L-butt adds banana points,
 ;M-butt totalizes enclosed counts, R-butt zots banana
 Buttons can't be set to / or ; - set to ? or : instead

 U300.120 Screen Setup and Color Mapping

 Screen configuration (placement of graphics windows on the screen) and
 color (or black & white) mapping is discussed in more detail in SEC#
 U300.550, U300.560 and U300.570 (if you have a B&W monitor, you will
 probably want to change the color mapping). Here we give the usual list of
 commands and a brief description of each.

 COMMANDS RELATED TO SCREEN SETUP & COLOR MAPPING

 FIGI ;Set screen configuration library to default
 FIGF FILNAM ;Read screen configuration library from FILNAM
 FIG N ;Set current screen configuration to type-N

 WIN ID ;Set subsequent displays to be in window-ID (dflt=1)

 AXON ID ;Enable the drawing of axis for window-ID (dflt)
 AXOF ID ;Disable the drawing of axis for window-ID

 CMAP ;Set color map to default ("takes" after next FIG)
 CMAP FILNAM ;Set color map from FILNAM ("takes" after next FIG)
 REVV ;Reverse all color specs ("takes" after next FIG)

 DLNS N ;Set # disp-lines = N - for HELP, DDIR & DSUM

 CURT LIVE ;Set full-wind cursor to track mouse LIVE (default)
 CURT X ;New full-wind cursor generated via mouse-click or key
 ;The CURT command takes effect only after next FIG

 SSI ;Set screen to initial - erase all graphic windows

 Program damm has, by default, 16 pre-defined screen connfigurations
 available. Each is referenced (via the FIG command) by an ID-number. A
 list of the ID-numbers along with the associated configuration is given
 below. Try a few FIGs and observe the results or if you really want to get
 serious, see SEC# U300.550. In particular, if you have an Xterminal with
 less than 1024 x 860 pixels, you will probably need to modify the
 configuration table as described in SEC# U300.550.

 1-[] 2-[][] 3-[][] 4-[][] 5-[][] 6-[][] 7-[][] 8-[][]
 [] [][] [] [][] [] [][]
 [] [][] [] [][]
 [] [][]

 9-[][] 10-[][] 11-[--] 12-[--] 13-[--] 14-[--] 15-[2D] 16-[2d]
 [] [][] [--] [--] [--]
 [] [][] [--] [--]
 [] [][] [--]
 [] [][]

 U300.130 Display Delay (hangup problems)

 Some display devices (X-terminals for example) may require a delay between
 successive displays. If your device "hangs up" or produces "incomplete
 displays" when executing LOOPS, you might try increasing the appropriate

 delay. A range of 10 to 20000 miliseconds is accepted.

 DLAF MS ;Set FIG-delay to MS milliseconds (default=1000)
 DLAF ;Set FIG-delay to 1000 milliseconds
 DLAD MS ;Set Display-delay to MS milliseconds (default=500)
 DLAD ;Set Display-delay to 500 milliseconds

 U300.150 Commands Related to 1-D Display

 FIG NF ;Choose screen config-NF. See SEC# U300.120 & U300.550
 ;for screen configuration and color mapping commands
 WIN NW ;Set subsequent displays to be in window-NW

 LIN/LOG ;Set display to linear/log (default is linear)

 PLON/PLOF ;Turn peak logging ON/OFF (dflt OFF) see SEC# U300.155

 ST /OV ;Set to disp mult hist stacked/overlayed (dflt = OV)

 CAL A,B,C ;Define energy calibration (E=A+B*Chan+C*Chan**2)

 COL I,J,K... ;Defines color sequence for display
 ;For I,J.. = 1 2 3 4 5 6 7
 ; COL= white,red,green,blue,yellow,magenta,cyan
 GWID WID ;Define cursor-mode sum-region width (channels)

 DNOR LO,HI ;Normalize displayed data to count-sum of chans LO,HI

 DL LO,HI ;Set display limits (min,max chan#)

 DMM LO,HI ;Set display limits (min,max counts)
 ;LO or HI = X says use MIN or MAX data value

 D IDLST ;Display histogram ID's contained in IDLST

 DX IDLST ;Display IDLST (range defined by expand-region)
 ;IDLST format is KF C ID, C ID.. KF C ID, C ID..
 ;C is an OPTIONAL floating-point norm-coeff (DFLT=1.0)
 ;KF = M,N,O,P,Q,R,S (default is N) and denotes:
 ;MEM-BUF, IN-FIL, OU-FIL, PROJ-FIL, Q-FIL, R-FIL, S-FIL
 ;If IDLST omitted, uses previously defined IDLST

 SUML LO,HI ;Define sum region for SUM command below
 SUM IDLST ;Sum counts (LO,HI) (IDLST same as D except C illegal)

 C ;Enter cursor-mode

 SSI ;Set screen to initial - erase graphic windows
 (continued on next page)

 U300.150 Commands Related to 1-D Display (continued)

 1-KEY CURSOR COMMANDS FOR 1-D DISPLAY

 <-- (LF-ARROW) ;Set expand-region lo-limit
 --> (RT-ARROW) ;Set expand-region hi-limit

 V ;Make marker display visible/invisible (toggles)
 E ;Expand display

 M ;Turn marker display ON
 K ;Turn marker display OFF (K is for kill)

 UP-ARROW ;Pan up - move picture so cursor-chan at left-screen
 DN-ARROW ;Pan down - move picture so cursor-chan at right-screen
 ;(you must be expanded to execute pan)

 L ;Set sum-region lo-limit
 H ;Set sum-region hi-limit
 G ;Set sum-region limits (LO=XCUR, HI=XCUR+WID-1)

 S ;Display sum, centroid, fwhm (2.354*sigma) of sum region
 ;DATA(LO),DATA(HI) defines BGD for NETS

 A ;Display sum, centroid, fwhm (2.354*sigma) of sum region
 ;YCUR(LO),YCUR(HI) defines BGD for NETS

 C ;Draw peak-marker and display chan# at cursor pos
 P ;Draw peak-marker and display energy at cursor pos

 / or ? ;Display XCUR, YCUR, channel# & energy
 ; ;Same as ? except forces logging (see SEC# U300.155)

 Q ;Quit cursor-mode (return to normal-mode)

 See SEC# U300.110 or Type: h mous for use of Mouse Buttons.

 U300.155 Peak Finding/Logging

 The following commands control peak finding.

 FIND BIAS,IFWHM ;Turn peak-find ON (see definitions below)

 FIND ;Turn peak-find ON (with defaults - see below)
 NOFI ;Turn peak-find OFF (default is OFF)

 BIAS...is the number of standard deviations above background that a peak
 channel must be in order to be considered as part of a peak. Useful
 values of BIAS are in the range 3 to 10. The default value is 5.0.

 IFWHM..is the approximate full-width at half-max (in channels) of peaks in
 the region of interest. This value is not very critical but should
 be within a factor of 2 or so of the correct value. The default
 value is 5.

 All peaks found within the display region will be marked & labeled with
 the associated energy-calibration value (def_ault is the same as channel
 number). Peak labels are integers (no decimals - to minimize screen space
 used) so if you want labels to be in units of keV, for example, you must
 enter CAL such that E(keV) is a whole number.

 See SEC# U300.430 for how peak-finding is used in fitting operations.

 Logging "found" and "marked" peaks on damm.log

 Peaks which either found via the FIND command above or marked via the
 1-key command (/ or ? or ;) may be logged on damm.log. The following
 commands (independent of LON/LOF) turns said logging ON and OFF.

 PLON ;Turns peak logging (to damm.log) ON
 PLOF ;Turns peak logging (to damm.log) OFF (default)

 For found peaks, damm.log may be read (skipping prog, date & time) as:

 READ(LU,10)IFLG,ID,CH,HEFT,(FILNAM(I),I=1,16)
 10 (29X,A4,I10,2F10.0,2X,16A4)

 Where: IFLG = 'PEAK' for found peak log entry
 ID = Spectrum ID number
 CH = Peak location in channels
 HEFT = Peak heftiness
 FILNAM = First 64 characters of spk- or his-filename

 For marked peaks, damm.log may be read (skipping prog, date & time) as:
 READ(LU,10)IFLG,ID,CH,ENER,(FILNAM(I),I=1,16)
 10 (29X,A4,I10,2F10.0,2X,16A4)
 Where: IFLG = 'MARK' for marked peak log entry
 ID = Spectrum ID number
 CH = Peak location in channels

 ENER = Peak "energy" from calibration constants
 FILNAM = First 64 characters of spk- or his-filename

 U300.160 Commands Related to 2-D Display

 FIG NF ;Choose screen config-NF. See SEC# U300.120 & U300.550
 ;for screen configuration and color mapping commands

 WIN NW ;Set subsequent displays to be in window-NW

 ZLEV N ;Set # of color/grey-scale intensity levels to N
 ZLEV ;Set # of color/grey-scale intensity levels to 10 (dflt)

 GRAS I,J,K.. ;Set grey-scale values (range 0-100) & ZLEV (# entries)
 ;Must do after first FIG ("takes" after next FIG)

 ZINT COLR ;Set 2-D intensity mapping to Color (default)
 ZINT GREY ;Set 2-D intensity mapping to Grey-scale
 ZINT DOTS ;Set 2-D intensity mapping to Dot-matrix (3x3 or 5x5)

 ZSON/ZSOF ;Z-scale ON/OFF - displays cnts vs colors legend (dflt)

 ZLIN/ZLOG ;Set 2-D display to linear/log (default is log)

 XC LO,HI ;Set min & max X-channel numbers for display
 YC LO,HI ;Set min & max Y-channel numbers for display

 ZMM LO,HI ;Set min & max counts/channel for display & count-sum
 ZMM LO ;Sets min & searches for max (semi-autoscale)
 ZMM ;Searches for min & max (full-autoscale)

 DD ID ;Display 2-D histogram ID from IN-file
 DD KF,ID ;Display 2-D histogram ID from KF-file

 DDX ID ;Display 2-D histogram ID from IN-file (expand region)
 DDX KF,ID ;Display 2-D histogram ID from KF-file (expand region)
 ;Where KF = N,O,Q,R,S (default is N) and denotes:
 ;IN-FIL, OU-FIL, Q-FIL, R-FIL, S-FIL
 ;ID (and KF) omitted says use previously defined spec

 DDID ;Shows ID-number & Filename for current 2-D display

 ZBL ;Zero in-core BAN-library

 LBL ;List in-core BAN-ID numbers

 C ;Enter cursor-mode

 SSI ;Set screen to initial - erase graphic windows

 U300.160 Commands Related to 2-D Display (continued)

 1-KEY CURSOR COMMANDS FOR 2-D DISPLAY

 <-- (LF-ARROW) ;Set expand-region lo-left- limit
 --> (RT-ARROW) ;Set expand-region hi-right-limit

 V ;Make expand markers visible/invisible (toggles)

 E ;Expand

 1 ;Move display such that cursor is at lo-left
 2 ;Move display such that cursor is at hi-left
 3 ;Move display such that cursor is at hi-right
 4 ;Move display such that cursor is at lo-right

 Z ;Zero (open) active X,Y-list
 A ;Add point to active X,Y-list
 D ;Dele nearest point in active X,Y-list
 M ;Move nearest point in active X,Y-list to cursor pos
 I ;Insert a point in active X,Y-list at cursor position

 L ;List active X,Y-list (on VDT)

 B ;Draw active BAN & BAN's in in-core library

 G ;Prompt for ID & read into in-core BAN-library

 O ;Open nearest in-core BAN for modification

 S ;Prompt for ID & store in in-core library & on disk

 R ;Store nearest BAN with original ID

 F ;Remove nearest BAN from in-core library & erase

 K ;Delete nearest BAN from in-core library and disk

 T ;Totalize counts in nearest BAN (active or not)

 P ;Totalize and & save X- & Y-projections on DAMQ8Q.SPK

 / or ? ;Display X,Y-coordinates of cursor

 Q ;Quit cursor-mode (return to normal-mode)

 See SEC# U300.110 or Type: h mous for use of Mouse Buttons.

 U300.200 Command Syntax - General Definitions

 B1 - Memory Buffer-1
 B2 - Memory Buffer-2
 ID - The ID-number of histogram to be read
 NUID - Next ID-number to be assigned to output histogram
 LO - A first-channel-number (usually of a Gate)
 HI - A last- channel-number (usually of a Gate)
 FAC - A multiplication factor

 Meaning of the individual command-characters

 I - Input or read
 O - Output or write
 A - Add or accumulate
 S - Shift (gain shift)
 GX - Gate on X-parameter (i.e. parameter # 1)
 GY - Gate on Y-parameter (i.e. parameter # 2)
 1 - Buffer-1
 2 - Buffer-2
 M - Multiply
 C - Crunch
 D - Divide

 U300.210 Commands for Setup (no immediate action)

 NUID IV - Set next ID to be used to IV

 IDST N - Set ID-step to be used in implied I/O loops
 (remains active until changed - default=1)

 CRUN IVAL - Sets standard crunch value to IVAL

 GASP XI1,XI2,XF1,XF2,NCF - Standard gain shift specification

 SIDA - Says treat 16-bit HIS-file data as signed
 USDA - Says treat 16-bit HIS-file data as un-signed (default)

 U300.220 Commands for Input/Output of 1-D Histograms

 I ID Input to B1
 IS ID Input to B1, gain shift B1
 IA ID,FAC Input to B1, B2=B2+FAC*B1
 ISA ID,FAC Input to B1, shift B1, B2=B2+FAC*B1
 IO ID Input to B1, output B1
 ISO ID Input to B1, shift B1, output B1
 IO IDA,IDB Input to B1, output B1 (for ID=IDA,IDB)
 ISO IDA,IDB Input to B1, shift, output (for ID=IDA,IDB)
 O1 Output B1
 O2 Output B2

 U300.230 Commands for Gating 2-D Histograms

 GY ID,LO,HI Y-gate to B1
 GYS ID,LO,HI Y-gate to B1, shift B1
 GYO ID,LO,HI Y-gate to B1, output B1
 GYO IDA,IDB,LO,HI Y-gate to B1, output B1 (for ID=IDA,IDB)
 GYSO ID,LO,HI Y-gate to B1, shift & output B1
 GYSO IDA,IDB,LO,HI Y-gate to B1, shift & output B1 (for ID=IDA,IDB)
 GYA ID,LO,HI,FAC Y-gate to B1, B2=B2+FAC*B1
 GYSA ID,LO,HI,FAC Y-gate to B1, shift B1, B2=B2+FAC*B1
 GX ID,LO,HI X-gate to B1
 GXS ID,LO,HI X-gate to B1, shift B1
 GXO ID,LO,HI X-gate to B1, output B1
 GXO IDA,IDB,LO,HI X-gate to B1, output B1 (for ID=IDA,IDB)
 GXSO ID,LO,HI X-gate to B1, shift & output B1
 GXSO IDA,IDB,LO,HI X-gate to B1, shift & output B1 (for ID=IDA,IDB)
 GXA ID,LO,HI,FAC X-gate to B1, B2=B2+FAC*B1
 GXSA ID,LO,HI,FAC X-gate to B1, shift B1, B2=B2+FAC*B1
 O1 Output B1
 O2 Output B2

 U300.240 Commands for General 2-D Projections

 PJ ID,BID,DEGR PROJ TO B1
 PJS ID,BID,DEGR Proj to B1, shift B1
 PJO ID,BID,DEGR Proj to B1, output B1
 PJO IDA,IDB,BIDA,BIDB,DEGR - Proj to B1, output B1
 (outer loop on BID, inner loop on ID)
 PJSO ID,BID,DEGR Proj to B1, shift & output B1
 PJSO IDA,IDB,BIDA,BIDB,DEGR - Proj, shift, output
 (outer loop on BID, inner loop on ID)
 PJA ID,BID,DEGR,FAC Proj to B1, B2=B2+FAC*B1
 PJSA ID,BID,DEGR,FAC Proj to B1, shift B1, B2=B2+FAC*B1

 PJAL Project all bananas in currently open
 BAN-file for HIS-files, ID's & DEGR'S
 contained therin
 O1 Output B1
 O2 Output B2
 ID denotes histogram ID, BID denotes Banana ID
 (DEGR = Projection-axis angle in degrees)

 U300.250 Commands for Operations on Buffer-1 & Buffer-2

 M1 XM Multiply B1 by XM
 M2 XM Multiply B2 by XM
 C1 ICRUN Crunch B1 by ICRUN (standard crunch unchanged)
 C2 ICRUN Crunch B2 by ICRUN (standard crunch unchanged)
 S1 Shift B1 by standard GASP
 S2 Shift B2 by standard GASP
 S1 XI1,XI2,XF1,XF2,NCF - Shift B1 as specified
 (standard GASP unchanged)
 S2 XI1,XI2,XF1,XF2,NCF - Shift B2 as specified
 (standard GASP unchanged)
 Z1 Zero B1
 Z2 Zero B2
 A12 FAC B2=B2+FAC*B1
 A21 FAC B1=B1+FAC*B2
 SWAP Swap B1 & B2
 M2D1 FAC B2=(FAC*B2)/B1
 O1 Output B1
 O2 Output B2

 U300.260 Commands which Show Data, Count-Sums etc (from Bufs-1 & -2)

 PR1 Print Buffer-1
 PR2 Print Buffer-2

 D1 LO,HI Display Buffer-1 (channels LO thru HI)
 D2 LO,HI Display Buffer-2 (channels LO thru HI)

 SUM1 LO,HI Display sum of counts LO-thru-HI of B1
 SUM2 LO,HI Display sum of counts LO-thru-HI of B2

 COMP NCH Compare first NCH-channels of B1 & B2
 (gives # counts and # mis-matches)

 GEN ID,KO,KX,NCH Generate test spectrum in B1 (NCH channels)
 Channel contents = KO+KX*(channel#+1)

 U300.270 Commands which Modify Buffer Contents

 SET1 ICN,YV Set channel ICN of B1 to YV
 SET2 ICN,YV Set channel ICN of B2 to YV
 SET1 LO,HI,YV Set channels LO-thru-HI of B1 to YV
 SET2 LO,HI,YV Set channels LO-thru-HI of B2 to YV
 SET1 LO,HI,YA,YB Set channels LO-thru-HI of B1 to YA-thru-YB
 SET2 LO,HI,YA,YB Set channels LO-thru-HI of B2 to YA-thru-YB
 ADD1 ICN,YV Add YV to channel ICN of B1
 ADD2 ICN,YV Add YV to channel ICN of B2
 ADD1 LO,HI,YV Add YV to channels LO-thru-HI of B1
 ADD2 LO,HI,YV Add YV to channels LO-thru-HI of B2
 ADD1 LO,HI,YA,YB Add YA-thru-YB to channels LO-thru-HI of B1
 ADD2 LO,HI,YA,YB Add YA-thru-YB to channels LO-thru-HI of B2
 (i.e. a strait line)

 U300.280 Commands Related to Printer Plots

 SKRZ Set to skip repeated-zeros for printer plots
 PLRZ Set to plot repeated-zeros for printer plots

 PLG ID,LO,HI,NCYC - Input to B1 & LOG plot
 PLN ID,LO,HI,NCFS - Input to B1 & LIN plot
 PLG IDA,IDB,LO,HI,NCYC - Input to B1 & LOG plot (for ID=IDA,IDB)
 PLN IDA,IDB,LO,HI,NCFS - Input to B1 & LIN plot (for ID=IDA,IBD)

 PLG1 LO,HI,NCYC Log Printer-plot of Buffer-1
 PLG2 LO,HI,NCYC Log Printer-plot of Buffer-2
 PLN1 LO,HI,NCFS Linear Printer-plot of Buffer-1
 PLN2 LO,HI,NCYC Linear Printer-plot of Buffer-2

 (NCFS = # of counts full-scale for LIN plots)
 (NCYC = # of cycles for LOG plots)

 U300.290 Discussion of Gain-Shifts and Compressions

 Gain shifts are specified by five parameters - XI1, XI2, XF1, XF2 and NCF.
 XI1 and XI2 represent two locations (in channel-# units) in the initial
 1-D histogram and XF1 and XF2 represent corresponding locations in the
 final histogram (i.e. after the transformation). That is:

 XF=A+B*XI
 where,
 B=(XF2-XF1)/(XI2-XI1)
 and
 A=XF1-B*XI1

 NCF gives the number of channels in the histogram after the transformation.
 If NCF=0, the final #-of-channels is determined by the initial
 #-of-channels NCI and the transformation specified. If NCF=-1 the final
 #-of-channels is set equal to NCI. Counts are redistributed into the final
 set of channels (bins) by assuming a uniform distribution of counts in the
 initial bins. Data shifted below channel-#-0 and above channel-#-NCF-1 are
 lost and gone forever.

 Gain-shifts are always "in place"
 CRUN IVAL (i.e. standard crunch) does it at "input time"
 Data is kept internally as floating - is converted to fixed on output
 All output from DAMM is 32 bits/channel

 U300.300 Manipulation of HIS-files (Copy, Add, Gain-Shift, etc)

 DAMM can copy, add (or subtract) and gain-shift 1-D or 2-D histograms from
 an input HIS-file to an output HIS-file.

 (1)....All operations are from an INPUT-file and INPUT-ID (IDI) to an
 OUTPUT-file and OUTPUT-ID (IDO).

 (2)....For HCOP and HADD operations, the output histogram must have the
 same dimensions and ranges as the input histogram.

 (3)....For SHIF (gain-shift) and SHAD (gain-shift & add) operations, the
 dimensions of the output histogram need not match the input.

 (4)....The number of bits-per-channel (16 or 32) need not be the same for
 input and output.

 (5)....Gain-shifts are accomplished by converting the data to floating
 point, rebinning (with count fractionation) and finally converting
 back to integer.

 (6)....Fractional copies and adds are also done in floating point.

 (7)....Final conversion from floating point to integer involves the
 addition of a random number whose range is 0.0 to 1.0. This
 procedure results in slight differences in the total number of
 counts for the input and output histograms.

 Use CHIL to create output DRR-file and allocate HIS-file as usual.

 HOU DISK:FIL.HIS - Opens HIS-file for output

 HCOP IDI,IDO <,F> - Copies F*IDI (input) to IDO (output)
 (If F is not entered, F=1)

 HADD IDI,IDO <,FI><,FO> - Adds FI*IDI to FO*IDO
 (If FI is not entered, FI=1)
 (If FO is not entered, FO=1)
 (If FO is entered, FI must be entered)

 HDIV IDI,IDO <,FI> - Divides FI*IDI by IDO & saves in IDO

 SHIF IDI,IDO <,FI> - Gain-shifts IDI & stores in IDO
 SHAD IDI,IDO <,FI><,FO> - Gain-shifts IDI & adds to IDO

 GSX XI1,XI2 XF1,XF2 - Defines X-gain-shift (described below)
 GSY YI1,YI2 YF1,YF2 - Defines Y-gain-shift (described below)
 GSXOF - Turns off X-gain-shift
 GSYOF - Turns off Y-gain-shift
 HSET IDO,IV - Sets IDO on output-file to IV
 HZOT IDO - Sets IDO on output-file to 0
 HSTA - Shows files open & gain-shift data

 U300.300 Manipulation of HIS-files (continued)

 X- and Y-Gain-shifts

 X-gain-shifts are specified by the parameters - XI1, XI2, XF1 & XF2.
 Y-gain-shifts are specified by the parameters - YI1, YI2, YF1 & YF2.

 For an X-gain-shift, XI1 and XI2 represent two locations (in channel #
 units) in the initial spectrum and XF1 and XF2 represent corresponding
 locations in the final spectrum (i.e. after transformation). that is:

 XF=A+B*XI
 where: B=(XF2-XF1)/(XI2-XI1)
 and A=XF1-B*XI1

 The "final" # of channels is determined by the "initial" # of channels and
 the transformation specified. Counts are redistributed into the final set
 of channels (bins) by assuming a uniform distribution of counts in the
 initial bins. Data shifted out of the range of the final histogram are
 lost and gone forever!

 The rules and procedures are identical for Y-gain-shifts.

 COMMENTS

 (1)....If gain-shift specifications are not given (or turned off),
 bin-widths will be the same for output and input.

 (2)....Any data which does not fall within the ranges of the output
 histogram will be lost (without comment).

 (3)....Data will be properly positioned in the output histogram even if
 the ranges of the input and output are different. That is, data
 will appear in that region of the output histogram which overlaps
 the gain-shifted input histogram.

 U300.350 Bananas - Definition, Rules, Construction & Display

 Free-form-gates (or Banana-gates - Bananas for short) are 2-D regions of
 arbitrary shape which are specified by a list of X,Y-points (channel-#
 coordinates). Each Banana on a given BAN-file is stored and recalled by
 means of an identification number (ID #). Attempts to store two Bananas
 with the same ID will be rejected. The rules for Bananas are listed below:

 (1) Banana coordinates nust be given in CLOCKWISE order.
 (2) The Banana is formed by connecting X,Y-points with strait lines.
 (3) The last point is connected to the first by the program.
 (4) No line segment of the Banana should intersect another.
 (5) A maximum of 63 points may be specified for any one Banana.
 (6) A maximim of 880 Bananas may be stored on a given BAN-file.

 Bananas may be displayed in two different forms (OPEN and CLOSED).

 A CLOSED Banana is one which has just been recalled from or stored on a
 BAN-file (i.e. there is an exact image on disk). There may be up to 20
 CLOSED Bananas displayed at once. You can do the following things with a
 CLOSED Banana:

 GET - recall from disk (prompted for ID) by typing G
 OPEN - for modification (change to OPEN) by typing O
 FORGET - delete from display by typing F
 KILL - delete from display and BAN-file by typing K
 TOTALIZE - counts contained within Banana by typing T
 PROJECT - (X & Y) and save on DAMQ8Q.SPK by typing P

 An OPEN Banana is one which is open for creation or modification. If the
 Banana is being newly created there will be no corresponding image or
 partial image on a BAN-file. Only one such Banana can exist at a given
 time. You can do the following things with a OPEN Banana:

 ADD - X,Y-point at cursor position by typing A

 INSERT - X,Y-point at cursor position by typing I
 MOVE - nearest X,Y-point to cursor position by typing M
 SAVE - on BAN-file (prompted for ID) by typing S
 REPLACE - on BAN-file (with old ID) by typing R
 ZERO - all X,Y-points by typing Z
 TOTALIZE - counts contained within Banana by typing T
 PROJECT - (X & Y) and save on DAMQ8Q.SPK by typing P

 All Banana references are made in cursor mode. ADD, INSERT, MOVE, SAVE,
 REPLACE and ZERO refer only to the OPEN Banana. Other references (except
 for GET) are made by moving the cursor such that it is closer to some
 point on the Banana of interest than it is to any point on any other
 Banana.

 ALL BANANAS MUST BE CONSTRUCTED IN CLOCKWISE ORDER

 U300.360 Bananas - Projections

 Projections via the PJ-command

 Data which fall within and on the boundries of a Banana are projected onto
 the X-axis of a coordinate system which is rotated through an angle DEGR
 with respect to the systen in which data channel-# (0,0) falls at the
 origin and the first and second indices of the histogram array define the
 X- and Y-axis, respectively. Channel-# XP in the projected histogram is
 calculated from channel-# X,Y in the 2-D histogram by an expression of the
 following form:

 XP=A+COS(DEGR)*X+SIN(DEGR)*Y

 where,

 A=0.0 For DEGR = 0 - 90

 A=-COS(DEGR)*XMAX For DEGR = 90 - 180

 A=-COS(DEGR)*XMAX-SIN(DEGR)*YMAX For DEGR = 180 - 270

 A=-SIN(DEGR)*YMAX For DEGR = 270 - 360

 XMAX and YMAX are the "dimensions" of the 2-D histogram. The effect of
 this transformation is to make all channel numbers in the projected
 histogram positive.

 NOTE: The "length" of the projected histogram may be as large as

 SQRT(XMAX**2+YMAX**2).

 Projections via the P-command

 Each time DAMM is executed it will create a new version of the file
 DAMQ8Q.SPK for the storage of projections. The file is only created if
 projrctions are actually made.

 When you project a Banana, both X- and Y-projections are stored on
 DAMQ8Q.SPK under the ID-numbers displayed. These 1-D histograms may be
 displayed (or otherwise used) in the normal manner for a SPK-file. Use the
 P-qualifier to display spectra from DAMQ8Q.SPK without explicitally
 opening it. For example, to display ID numbers 1,3,5 from DAMQ8Q.SPK, type:

 D P 1,3,5

 U300.400 FITTING - Introduction & General Features

 You specify how fitting is to be carried out by supplying a number of Fit
 Specification Data Sets which may be given in any order. Many of these
 have default values (see SEC# U300.450). After the fitting process is
 specified, one or more Fit Requests are entered. Subsequently, some or all
 of the Fit Specifications may be changed and more Fit Requests entered
 etc. etc.

 GENERAL FEATURES

 (1)....Fit specifications may be entered interactively or read from a file
 or a combination of the two methods may be used.

 (2)....Peak and background intensities are determined in a weighted linear
 least-squares fit while peak positions, widths, and asymmetry
 parameters are determined by a non-linear least-squares search
 (either Gradient search or Gauss method - See SEC#s U300.480 and
 U300.490).

 (3)....Peak positions may be typed in or selected interactively or found
 automatically.

 (4)....Spectra are fitted one section at a time and can be no more than
 512 channels in length.

 (5)....In the gradient search mode (FIT command), each section may contain
 a total of 16 peaks and background terms. That is, the number of
 linear coefficients to be determined in the linear least squares
 fit (# of peaks plus # of background terms) may not exceed 16. In

 the Gauss mode, only 5 peaks are allowed and asymmetry is not
 supported.

 (6)....Initial values of peak positions, widths and asymmetry parameters
 must be specified by the user. Different values of width and
 asymmetry may be assigned to each peak or all peaks may be assigned
 the same values.

 (7)....The FWHM for peaks in a section may vary independently,
 conditionally, or be held fixed. All peaks in a section may be
 forced to have the same width or fixed relative widths.
 (8)....Peak positions may be adjusted or held fixed.

 (9)....Peaks may be gaussian or asymmetric (see SEC# U300.470 & U300.530

 (10)...The background may be specified (by up to 50 X,Y-points) or be
 determined in the fit. If determined in the fit, the background
 takes the form, Y = A + B*X + C*X*X + D*X*X*X + with the
 number of terms in the power series specified by the user.

 (11)...The output includes the Fit Specification Data, peak positions,
 widths, energies, areas and uncertainties (in percent) as well as a
 printer plot of the fit on a 0.5 to 5 cycle plot.

 U300.410 Commands for 1-key (cursor mode)

 One-Key cursor commands (valid following a DS or DSX command)

 Type: C - To enter cursor-mode

 P/UP Add/Delete peak to Library (pos specified by cursor)

 M/M Move nearest displayed peak to cusor pos (FW, ASYM unchanged)

 X/UX Fix/Free peak position (for displayed peak nearest to cursor)

 W/UW Fix/Free peak width (for displayed peak nearest to cursor)

 L/UL Fix/Free Lo-Side ASYM (for displayed peak nearest to cursor)

 H/UH Fix/Free Hi-Side ASYM (for displayed peak nearest to cursor)

 O/UO Turn peak ON/OFF (for displayed peak nearest to cursor)

 B/UB Add/Delete background point at cursor position

 <-- Set Expand Region Lo-Limit

 --> Set Expand Region Hi-Limit

 [Set Fit Region Lo-Limit

] Set Fit Region Hi-Limit

 / or ? Display chan#, cursor Y-value, chan contents

 S Disp sum, cent & fwhm of Fit-Reg - DAT([),DAT(]) defines BGD

 A Disp sum, cent & fwhm of Fit-Reg - CUR([),CUR(]) defines BGD

 Q Return from cursor control routine

 E Expand display (region defined by <-- -->)

 See SEC# U300.110 or Type: h mous for use of Mouse Buttons.

 U300.420 Setup Commands

 Commands for entry of peak, background & skip-regions ---------------------

 PZOT - Zero the Peak Library
 PK X,W,ASLO,ASHI - List of complete peak specifications

 BZOT - Delete Fixed Background array
 BACK X1,Y1 X2,Y2 .. - X,Y-points for fixed background

 SKIP - Without List turns SKIP OFF
 SKIP I1,I2 J1,J2 .. - Up to 4 regions to omit from Fit

 Commands for defining FWHM, ASYM, WLIM, ALIM, NBC, WOOD, ECAL -------------

 FW FWA,FWB,FWC - Coefficients for standard width function
 WLIM FWLO,FWHI - Variation limit factors for peak widths

 ASYM ASLO,ASHI - Standard Lo-Side and Hi-Side asymmetries
 ALIM FALO,FAHI - Variation limit factors for peak asymmetries

 NBC NBC - Number of power series terms in variable BGD
 WOOD ON/OFF - Turn Woods-Saxon BGD term ON/OFF (default OFF)

 - ON creates an additional background component
 - with a Woods-Saxon "jog" under each peak which
 - is porportional to the peak intensity.

 ECAL ECO,ECA,ECB - Coefficients for standard energy calibration

 Commands for control of non-linear parameter variation --------------------

 DPX XSTEP,DXMAX - Initial step size and limit for peak pos
 DEL DEL,DELFAC,NDEL - Initial step size, step size multiplier and
 - number of DEL-values to use

 VB - Use Variable Background (the default)
 FB - Use Fixed Background if available

 VX KVAR - Kind of variation for peak positions
 VW KVAR - Kind of variation for peak widths
 VALO KVAR - Kind of variation for Lo-Side asymmetries
 VAHI KVAR - Kind of variation for Hi-Side asymmetries
 KVAR = UIND - says vary Unconditionally, Independently
 = CIND - says vary Conditionally, Independently
 = ULOC - says vary Unconditionally, Locked
 = CLOC - says vary Conditionally, Locked
 = FIX - says keep Fixed - this the default assignmemt

 Conditional says hold Fixed if peak so specified.
 Unconditional says vary regardless of peak specifications.
 Independent says given parameter-types are varied independently.
 Locked says given parameter-types (width for example) are varied together
 (multiplied by the same factor) in the non-linear search.

 U300.430 Display of Data, Fits and Printer-plots

 Commands for general display control --------------------------------------

 FIG N - Select screen configuration number-N
 WIN N - Select window-N for subsequent displays
 LIN/LOG - Set graphic display to LIN (default) or LOG
 DMM YMIN,YMAX - Set display-range (YMIN & YMAX)
 DL ILO,IHI - Set display-range (channel# limits)
 DS ID - Display spectrum# ID (range defined by DL)
 DS ID,ILO,IHI - Display spectrum# ID (DL values replaced)
 (MAX value of IHI-ILO = 4095)
 DSX ID - Display Data defined by Expand Region
 C - Enters 1-key cursor-mode

 Commands related to display of FITS ---------------------------------------

 MON/MOF - Peak Markers ON/OFF for DF (default = ON)
 DFI - Set to display (DF) DATA,FIT,BGD (default)
 DPK - Set to display (DF) DATA,FIT,PEAKS,BGD
 DPPB - Set to display (DF) DATA,FIT,(PEAKS+BGD),BGD
 DF - Display Fit (channel-limits given by Fit-range)
 DF ILO,IHI - Display Fit (channel-limits given by ILO,IHI)
 DC NPK - Display Calculated peak # NPK+ RESIDUAL

 PRP XLO,XHI - Display peaks from Library in range XLO thru XHI
 PRP - Display all peaks from Library
 PRB - Display all fixed Bgd-points
 FSTAT - Display current fit-parameters
 DR - List results of last Fit on VDT (terminal)

 Commands related to printer-plots of results ------------------------------

 KPPL NONE - Says do no printer plots
 KPPL FITS - Says plot FITS only (the default)
 KPPL ALL - Says plot FITS, COMPONENTS and RESIDUALS

 PR - Print and Plot results of last Fit on printer

 Commands related to peak-finding --

 FIND BIAS,FWHM - Enables peak-finding (see SEC# U300.155)
 FIND - Enables peak-finding with (BIAS=5, FWHM=5)
 NOFI - Disables peak-finding

 If FIND is enabled (see SEC# U300.155 for general details), DAMM will do a
 peak find within the display region each time a DS (or DSX) command is
 given. An attempt will then be made to add the newly found peaks to the
 internal peak library. If a newly found peak is closer than 0.5*FWHM
 channels to an existing library peak, it will not be added. Finally, all
 library peaks will be marked on the display in the usual manner. No
 distinction is made between "found peaks" and "manually entered peaks".

 U300.440 FIT Execution Commands

 Commands for FIT execution --

 FIT ID,ILO,IHI - Fit Request - (non-linear gradient search)
 GFIT ID,ILO,IHI - Fit request - (gaussian method)
 RFIT ID,ILO,IHI - Resume FIT/GFIT start with Parms from last Fit
 LFIT ID,ILO,IHI - Linear Fit - no non-linear search

 - (Fit-range specified by ILO,IHI)
 FIT ID X - Fit Range specified by cursors (Fit Region)
 GFIT ID X - Fit Range specified by cursors (Fit Region)
 RFIT ID X - Fit Range specified by cursors (Fit Region)
 LFIT ID X - Fit Range specified by cursors (Fit Region)

 Ctrl/C - Terminates Fit-in-prograss (VAX)

 U300.450 FIT Parameters - Saving, Setting, Default

 Commands which save FIT parameters in memory library ----------------------

 SAV I,J - Save all Parms from peaks I thru J of last Fit in PK-LIB
 SAX I,J - Save X-Parms for peaks I thru J of last Fit
 SAW I,J - Save W-Parms for peaks I thru J of last Fit
 SAL I,J - Save ASL-Parms for peaks I thru J of last Fit
 SAH I,J - Save ASH-Parms for peaks I thru J of last Fit
 (If I,J ommitted, indicated Parms from ALL peaks are saved)

 Commands which set FIT parameters ---

 SET- X1,X2 - Set STD WIDTH and ASYM for peaks in range X1-X2
 values (defined by FWA, FWB, FWC, ASLO, ASHI)

 SETW X1,X2 - Set WIDTH for peaks in range X1-X2 to STD value
 SETW X1,X2,WA,WB,WC - Set WIDTH for peaks in range X1-X2 to value
 defined by WA,WB,WC (FWA,FWB,FWC unchanged)

 SETL X1,X2 - Set ASLO for peaks in range X1-X2 to STD value
 SETL X1,X2,ASLOT - Set ASLO=ASLOT for peaks in range X1-X2

 SETH X1,X2 - Set ASHI for peaks in range X1-X2 to STD value
 SETH X1,X2,ASHIT - Set ASHI=ASHIT for peaks in range X1-X2

 (If X1,X2,.. omitted, indicated Parms for ALL peaks are set)

 List of default FIT parameters --

 DEL = 0.05 FWLO = 0.5 VX = CIND NBC = 2
 DELFAC=0.25 FWHI = 2.0 VW = CLOC WOOD = OFF
 NDEL = 1 FALO = 0.5 VALO = FIX KPPL = FITS
 XSTEP = 0.5 FAHI = 2.0 VAHI = FIX
 DXMAX = 5.0 ASLO = 0.0
 ASHI = 0.0

 U300.460 FIT Specification Details

 PK Data Set - Complete Peak Specifications

 The PK Data Set accomodates a full specification of the characteristics of
 each individual peak. Up to 100 peaks may be included in the list. Each
 peak is specified by the following parameters.

 X......Gives the initial peak position in channels.

 W......Specifies the initial peak FWHM in channels. If not entered, FWHM
 is set to the value specified by FWA, FWB & FWC.

 ASLO...Specifies the Lo-Side asymmetry parameter.

 ASHI...Specifies the Hi-Side asymmetry parameter.

 Other Specifications

 ECO,ECA,ECB...Defines the spectrum energy calibration (not required for
 fitting) through the relation;

 E = ECO + ECA*(CHAN #) + ECB*(CHAN #)**2

 FWA,FWB,FWC...Defines the peak WIDTH as a function of channel number
 through the relation;

 FWHM(CHANNELS)=FWA+FWB*SQRT(CHAN #)+FWC*(CHAN #)

 ASLO,ASHI...Are the initial values of the Lo-Side and Hi-Side asymmetry
 parameters. If this specification is used, the initial values will
 be the same for all peaks.

 FWLO...Is the minimum fraction of the initially specified value by which
 any peak width may be reduced.

 FWHI...Is the maximum fraction of the initially specified value by which
 any peak width may be increased.

 FALO...Is the minimum fraction of the initially specified value by which
 any peak asymmetry parameter may be reduced.

 FAHI...Is the maximum fraction of the initially specified value by which
 any peak asymmetry parameter may be increased.

 U300.460 FIT Specification Details (continued)

 DEL....Specifies the fraction by which the peak width and the peak
 asymmetry parameters are to be changed in each step of the non-
 linear search. For example,

 (NEW WIDTH) = (OLD WIDTH)*(1.0+-DEL)

 DELFAC-Is a factor by which the current value of DEL is multiplied in
 order to obtain a new (smaller) value. Typically one starts with a
 fairly large value of DEL (say 0.02 to 0.05) and subsequently makes
 one or more reductions in order to achieve a greater convergence
 speed.

 NDEL...Is the number of DEL-values to be used

 XSTEP..Is the maximum amount (in channels) that a peak may be moved in any
 one step in the non-linear search for the best fit. XSTEP is
 reduced at the same time and by the same factor (DELFAC) that DEL
 is reduced.

 DXMAX..Is the maximum number of channels (either + or -) that any peak is
 allowed to be moved from its original position.

 SKIP...Defines up to four regions within the Fit Range which are to be
 ignored in doing the fit.
 KPPL=..NONE says do no printer plots.
 KPPL=..FITS says plot the FIT (experimental and calculated spectrum on the
 same graph).
 KPPL=..ALL says plot the FIT (as in KPPL...=FITS) and in addition, plot
 each component (calculated peak) together with the corresponding
 "residual component". What do you mean by residual component, you
 ask. When plotting the Ith peak we calculate the Ith residual
 component by subtracting any background (specified or calculated)
 as well as all calculated peaks other than the Ith from the
 experimental spectrum.
 NBC....Denotes the number of background components to be included in the
 power series. NBC=2 Says use the form Y=A+B*X and NBC=4 says use
 Y=A + B*X + C*X*X + D*X*X*X. The number of peaks in a section plus
 NBC must not exceed 16.
 WOOD...ON/OFF says turn Woods-Saxon background term ON/OFF. The default is
 OFF. If WOOD is ON, an additional background component is included
 which has a Woods-Saxon type "jog" under each peak which is
 porportional to the peak intensity. The jog form is given by:
 Y = 1.0/(1.0+EXP(ARG)) ;where
 ARG = 4.714*(X0-X)/FWHM ;and
 X0=peak-position, X=channel-of-interest, and FWHM=peak-FWHM.

 The use of such a background form could be helpful in the analysis
 of weak peaks which are located on the low-energy side of strong
 peaks. You will have to be the judge.

 U300.470 Discussion of Peak Shapes

 The most general peak shape allowed is given by

 YL=EXP(-(X-XO)**2/(A**2*(1+ASLO*(X-XO)/A)
 YH=EXP(-(X-XO)**2/(A**2*(1+ASHI*(X-XO)/A)

 Where A is the gaussian Half-Width at 1/e max and YL and YH describe the
 curve on the Lo- and Hi-Sides, respectively. If all asymmetry parameters
 are held to zero, the shape is gaussian. The ASLO/ASHI parameters broaden
 the Lo/Hi sides of the peak and result in an expodential fall-off (like
 EXP(-(X-X0)/(A*ASLO)) for example) As you move far away from the peak
 maximum (i.e. channel XO). To get some idea of what size asymmetry
 parameters to use see Fig 1.

 U300.480 Gradient-search Method (FIT request)

 Each time the program encounters a Fit Request, it searches the complete
 Library and includes in the Fit all peaks which are ON and whose positions
 lie within the Range of Fit (i.e. between ILO and IHI).

 GENERAL PROCEDURE FOR THE NON-LINEAR SEARCH

 (1)....The initial values of all parameters which are to vary in a
 non-linear way are set to the initial values specified by the user.

 (2)....Each individual parameter is changed (both increased and decreased)
 by an amount determined by DEL or XSTEP in order to establish a
 "direction" (increase or decrease) for each parameter.

 (3)....All parameters are changed in the direction determined in step (2)
 and in step sizes determined by DEL and XSTEP until the Quality of
 Fit is no longer improved.

 (4)....Steps (2) and (3) are repeated until no improvment in the Fit can
 be made

 (5)....DEL and XSTEP are multiplied by DELFAC and steps (2) and (3) are
 repeated until no improvment in the Fit can be made.

 (6)....Step (5) is repeated (NDEL-1) times.

 U300.490 Gaussian Method (GFIT request)

 The GFIT (Gauss-method) fit request initiates an alternate non-linear
 procedure. Commands are:

 GFIT ID,ILO,IHI
 or
 GFIT ID X

 This command initiates a nonlinear least-squares search by Gauss' method
 as modified by Marquardt. (See, for example, P.R. Bevington's book, "Data
 Reduction and Error Analysis for the Physical Sciences", p. 235 ff. The
 routines used in GFIT are not Bevington's, but are those of M.J. Saltmarsh
 from the SEL 840-A program PKFT.)

 The search continues until chi-squared per degree of freedom (QFN) has
 changed by less than 0.0001 or until 25 iterations have occurred. The
 search may be resumed by the RFIT command. The iteration number and QFN
 appear on the right side of the screen.

 The printer output from GFIT includes absolute error estimates for the
 peak positions, widths, and areas which are derived from the correlation
 matrix of the fit. The percentage error in the area is printed in the
 column labeled PCE.

 The DAMM commands VW ULOC or VW CLOC (the default option) ae interpreted
 to mean that the widths of the peaks are to be the same and vary together.
 Widths may be varied independently by VW UIND or VW CIND. Individual
 widths or positions may be frozen or released by the standard cursor
 commands of DAMM. If one or more widths are to be kept fixed while others
 are varied, the command VW CIND or VW CLOC should be given; if UIND or ULOC
 is given, the instruction to fix is ignored.

 If GFIT is chosen, the program attempts to estimate the width of the
 tallest peak for its initial guess of width. If unsuccessful it reverts
 to the standard DAMM procedure of using whatever was stored from the last
 previous FW, SETW commands (or the default option, which is FW = 5).

 At present The GFIT request is limited to fitting a sum of up to 5
 Gaussian peaks with a linear background. The parameters ASLO and ASHI for
 asymmetric peaks are ignored.

 U300.500 Estimated Uncertainties in Peak Areas

 Estimated uncertainties should always be viewed with considerable
 skepticism, especially when non-linerar as well as linear fitting

 processes are involved, as it is here. The uncertainties in the peak areas
 estimated by both the FIT and GFIT procedures are rather "standard" and
 involve CHISQ (of the overall fit) as well the diagonal element of the
 inverse matrix corresponding to the peak intensity in question. This
 inverse matrix is found in the standard linear least-squares fitting
 process. See a book like "Bevington" or Cziffra et. al. UCRL-8523, 1958
 for a real discussion of this subject. I have used:

 D(J) = SQRT(AINV(J,J)*QFN) where;

 D(J) = the estimated uncertainty in the J-th fit parameter B(J)
 (there is a B(J) for each peak-area(J))

 QFN = CHISQ/(#data-points - #adjustable-parameters)

 AINV(J,J) = the J-th diagonal element of the inverse matrix found in the
 linear least-squares fitting process.

 PCE(J) = 100*D(J)/B(J) = percent uncertainty in J-th peak-area.

 U300.510 Reading Fit Results from damm.log

 The table of fit-results recorded on damm.log, as a result of a PR
 command, includes flags of the form LAB$ to facillitate the location and
 decoding of relevant data by other programs. Formats associated with the
 different line-labels are listed below.

 Label Format
 TIT$ (1X,15X,2I6,6X,20A4)
 DEL$ (1X,2F10.0,I10,6F10.0)
 SKP$ (1X,8I10)
 CAL$ (1X,8F10.0,I10)
 VAR$ (1X,6(6X,A4),I10)
 FIT$ (1X,5F10.0,3F8.0,4F7.0,I5,I7)
 GFI$ (1X,5F10.0,3F8.0,4F7.0,I5,I7)
 BGD$ (1X,2F10.2)
 QFN (1X,6X,F10.0,11X,F10.0)

 Alternatively, one may make use of the routines contained in the
 internally documented demonstration program samred. The source of this
 program is in /usr/users/milner/Ddamm/samred.f.

 U300.520 Common Problems

 (1)....If you define the standard FWHM (via command: FW FWA,FWB,FWC) or

 standard asymmetry parameters (via command: ASYM ASLO,ASHI), this
 does not re-define such parameters for previously defined peaks.
 You must use SETW to do this (see SEC# U300.450).

 U300.530 Peak Shape vs Asymmetry (Log plot)

 YL=EXP(-(X-XO)**2/(A**2*(1+ASLO*(XO-X)/A)
 YH=EXP(-(X-XO)**2/(A**2))
 Y = 100 --
 SYMBOL ASLO 0
 0 0.0 11 00
 2 0.2 1 0
 4 0.4 1
 6 0.6 10 0
 8 0.8 14
 1 1.0 140 0
 162
 FWHM = 12 1640 0
 18 2
 1864
 20 0
 1864
 186
 1 420 0
 1 86
 8 4
 1 6 20 0
 1 8 4
 1 8 6 2

 1 8 6 4 0 0
 1
 8 6 4 2
 Y = 10 ------------------- 1 8 ---
 1 6 0 0
 1 8 4 2
 6
 1 8 4
 1 8 6 2
 0 0
 1 8 6 4
 1
 1 8 6 2
 8 4
 1 0 0
 1 8 6 4

 2
 1 8 6
 1 4
 1 8 6
 8 2 0 0
 1 6 4
 1 8
 6
 1 8 4 2
 Y = 1 ---
 Figure 1

 U300.550 Screen Configurations

 The sizes and locations of display windows are controlled by one or more
 of the commands - FIG, FIGF or FIGI.

 FIG ID - Sets the number and size of display windows to that specified
 by configuration number ID. A given configuration ID number
 may specify up to 20 display windows. The default configuration
 library contains ID-numbers 1 thru 16. Type: H FIG for a
 display indicating the default sceen configurations or just
 Type: FIG 1, FIG 2 ... FIG 16 and see what you get.

 FIGF FILENAME - Requests that a new configuration library be read from
 a file named FILENAME. The file U1:[MILNER.XWIN]XFIG1.DAT
 which contains the default configuration is listed on the next
 next two pages. The **** in col-1 of the table denote comment
 lines and are ignored in processing.

 ****DEFAULT SCREEN-CONFIGURATION TABLE
 ****--
 ****FIG-ID X0(PIX) Y0(PIX) W(PIX) H(PIX)
 1 30 84 540 480

 2 0 39 480 480
 2 495 39 480 480

 3 30 369 540 300
 3 30 39 540 300
 3 585 39 390 390

 4 0 369 480 300
 4 0 39 480 300
 4 495 369 480 300
 4 495 39 480 300

 5 30 489 480 195
 5 30 264 480 195
 5 30 39 480 195
 5 525 39 435 435

 6 0 489 480 195
 6 0 264 480 195
 6 0 39 480 195
 6 495 489 480 195
 6 495 264 480 195

 6 495 39 480 195

 7 30 534 480 135
 7 30 369 480 135
 7 30 204 480 135
 7 30 39 480 135
 7 525 39 435 435

 ****DEFAULT SCREEN-CONFIGURATION TABLE (continued)
 ****FIG-ID X0(PIX) Y0(PIX) W(PIX) H(PIX)
 8 0 534 480 135
 8 0 369 480 135
 8 0 204 480 135
 8 0 39 480 135
 8 495 534 480 135
 8 495 369 480 135
 8 495 204 480 135
 8 495 39 480 135

 9 30 579 480 105
 9 30 444 480 105
 9 30 309 480 105
 9 30 174 480 105
 9 30 39 480 105
 9 525 39 435 435

 10 0 579 480 105
 10 0 444 480 105
 10 0 309 480 105
 10 0 174 480 105
 10 0 39 480 105
 10 495 579 480 105
 10 495 444 480 105
 10 495 309 480 105
 10 495 174 480 105
 10 495 39 480 105

 11 0 39 960 525

 12 0 354 960 270
 12 0 54 960 270

 13 0 489 960 195
 13 0 264 960 195
 13 0 39 960 195

 14 0 549 960 135
 14 0 384 960 135
 14 0 219 960 135
 14 0 54 960 135

 15 240 39 750 750

 16 0 39 645 645

 FIG-ID = Configuration ID number to be associated with window.
 X0(PIX) = X-coordinate of upper left corner of window in pixels.
 Y0(PIX) = Y-coordinate of upper left corner of window in pixels.
 W(PIX) = Width of window in pixels.
 H(PIX) = Height of window in pixels.
 FIGI Restores the configuration library to the default state.

 U300.560 Graphic Screen Color Mapping

 The colors (or grey scale) is controlled by means of a color map which has
 40 entries that specify (red, green, blue) intensities in the range
 0-65535. The default table contained in /usr/hhirf/cmap.dat or in
 U1:[MILNER.XWIN]CMAP.DAT is listed below:

 RED GREEN BLUE ;ENTRY# - NORMAL USE ------------------------------

 0 0 0 ;01 - BLACK
 65535 65535 65535 ;02 - 1-D DISPLAY - COL(1) - FIT DATA
 65535 0 0 ;03 - 1-D DISPLAY - COL(2)
 0 65535 0 ;04 - 1-D DISPLAY - COL(3) - FIT CALC
 0 0 65535 ;05 - 1-D DISPLAY - COL(4)
 65535 65535 0 ;06 - 1-D DISPLAY - COL(5) - FIT BACK
 65535 0 65535 ;07 - 1-D DISPLAY - COL(6)
 0 65535 65535 ;08 - 1-D DISPLAY - COL(7)
 65535 65535 0 ;09 - 1-D DISPLAY - COL(8)
 65535 65535 0 ;10 - NOT USED FOR NOW
 0 0 32767 ;11 - 2-D COLOR DISPLAY
 0 0 65535 ;12 - 2-D COLOR DISPLAY
 32767 0 32767 ;13 - 2-D COLOR DISPLAY
 65535 0 65535 ;14 - 2-D COLOR DISPLAY
 32767 0 0 ;15 - 2-D COLOR DISPLAY
 65535 0 0 ;16 - 2-D COLOR DISPLAY
 32767 32767 0 ;17 - 2-D COLOR DISPLAY
 65535 65535 0 ;18 - 2-D COLOR DISPLAY
 32767 32767 32757 ;19 - 2-D COLOR DISPLAY
 65535 65535 65535 ;20 - 2-D COLOR DISPLAY

 15000 15000 15000 ;21 - 2-D GREY-SCALE DISPLAY
 20600 20600 20600 ;22 - 2-D GREY-SCALE DISPLAY
 26200 26200 26200 ;23 - 2-D GREY-SCALE DISPLAY
 31800 31800 31800 ;24 - 2-D GREY-SCALE DISPLAY
 37400 37400 37400 ;25 - 2-D GREY-SCALE DISPLAY
 43000 43000 43000 ;26 - 2-D GREY-SCALE DISPLAY
 48600 48600 48600 ;27 - 2-D GREY-SCALE DISPLAY
 54200 54200 54200 ;28 - 2-D GREY-SCALE DISPLAY
 59800 59800 59800 ;29 - 2-D GREY-SCALE DISPLAY
 65535 65535 65535 ;30 - 2-D GREY-SCALE DISPLAY
 32767 32767 32767 ;31 - NOT USED FOR NOW
 32767 65535 65535 ;32 - NOT USED FOR NOW
 65535 0 0 ;33 - NOT USED FOR NOW
 65535 65535 65535 ;34 - GCOR(1)
 65535 0 0 ;35 - GCOR(2), SAM PK MARK, FIT VAR MARK
 0 65535 0 ;36 - GCOR(3), 1-D PK LAB, 2-D BAN & EX-MARK
 0 0 65535 ;37 - GCOR(4), 1-D REG MARK, FIT VAR MARK
 65535 65535 0 ;38 - GCOR(5), CURSOR
 65535 0 65535 ;39 - GCOR(6)
 0 65535 65535 ;40 - GCOR(7)
 Different color mapping is accomplished by the CMAP command as shown below:
 CMAP FILENAME ;Processes a file FILENAME of the structure shown above
 ;and maps as specified therein. The new mapping only
 ;takes place subsequent to the next FIG command.

 U300.570 Graphic Screen Black & White Mapping

 When using black & white monitors, the table /usr/hhirf/bmap.dat, (or
 U1:[MILNER.XWIN]BMAP.DAT) listed below, may be more useful. If you are
 using the REVV mode, then table /usr/hhirf/bmapr.dat or
 U1:[MILNER.XWIN]BMAPR.DAT, not listed here, should be used as a template.
 You will probably need to make other adjustments in order to achieve
 semi-satisfactory results. Note: that table entries are labeled with their
 uses.

 RED GREEN BLUE ;ENTRY# - NORMAL USE ------------------------------

 0 0 0 ;01 - BLACK
 65535 65535 65535 ;02 - 1-D DISPLAY - COL(1) - FIT DATA
 65535 65535 65535 ;03 - 1-D DISPLAY - COL(2)
 65535 65535 65535 ;04 - 1-D DISPLAY - COL(3) - FIT CALC
 65535 65535 65535 ;05 - 1-D DISPLAY - COL(4)
 65535 65535 65535 ;06 - 1-D DISPLAY - COL(5) - FIT BACK
 65535 65535 65535 ;07 - 1-D DISPLAY - COL(6)
 65535 65535 65535 ;08 - 1-D DISPLAY - COL(7)
 65535 65535 65535 ;09 - 1-D DISPLAY - COL(8)

 65535 65535 65535 ;10 - NOT USED FOR NOW
 0 0 32767 ;11 - 2-D COLOR DISPLAY
 0 0 65535 ;12 - 2-D COLOR DISPLAY
 32767 0 32767 ;13 - 2-D COLOR DISPLAY
 65535 0 65535 ;14 - 2-D COLOR DISPLAY
 32767 0 0 ;15 - 2-D COLOR DISPLAY
 65535 0 0 ;16 - 2-D COLOR DISPLAY
 32767 32767 0 ;17 - 2-D COLOR DISPLAY
 65535 65535 0 ;18 - 2-D COLOR DISPLAY
 32767 32767 32757 ;19 - 2-D COLOR DISPLAY
 65535 65535 65535 ;20 - 2-D COLOR DISPLAY
 15000 15000 15000 ;21 - 2-D GREY-SCALE DISPLAY
 20600 20600 20600 ;22 - 2-D GREY-SCALE DISPLAY
 26200 26200 26200 ;23 - 2-D GREY-SCALE DISPLAY
 31800 31800 31800 ;24 - 2-D GREY-SCALE DISPLAY
 37400 37400 37400 ;25 - 2-D GREY-SCALE DISPLAY
 43000 43000 43000 ;26 - 2-D GREY-SCALE DISPLAY
 48600 48600 48600 ;27 - 2-D GREY-SCALE DISPLAY
 54200 54200 54200 ;28 - 2-D GREY-SCALE DISPLAY
 59800 59800 59800 ;29 - 2-D GREY-SCALE DISPLAY
 65535 65535 65535 ;30 - 2-D GREY-SCALE DISPLAY
 32767 32767 32767 ;31 - NOT USED FOR NOW
 32767 65535 65535 ;32 - NOT USED FOR NOW
 65535 0 0 ;33 - NOT USED FOR NOW
 65535 65535 65535 ;34 - GCOR(1)
 45000 45000 45000 ;35 - GCOR(2), FIT PK MARK, FIT VAR MARK
 65535 65535 65535 ;36 - GCOR(3), 1-D PK LAB, 2-D BAN & EX-MARK
 65535 65535 65535 ;37 - GCOR(4), 1-D REG MARK, FIT VAR MARK
 65535 65535 65535 ;38 - GCOR(5), CURSOR
 65535 65535 65535 ;39 - GCOR(6)
 65535 65535 65535 ;40 - GCOR(7)

 U300.600 Implementation

 The XPAK tape that you receive will contain all of the files that I have
 on my Vaxstation-3100, whether you want them or not - it is just a lot
 easier for me to do that. Since I am running 5.3 on the Vaxstation, the
 EXEs may not work and you may have to re-link. To do this, type the
 following:

 @DAMMLNK ;To link DAMM

 Final Note

 Of course, you will probably need to change DISK and [DIRECTORY] names in
 files like LOGIN.COM, DAMM.COM, DAMMLNK.COM, etc. The same sort of things

 you did for VAXPAK implementation.

 Good Luck,
 W. T. Milner

2D GATE WITH CURSOR - RVR

In order to set gates with cursor, you should first open the 2D matrix for INput
(HIS or CMAT structures are accepted). This file should contain the 2D matrix as ID #1.
Then open an SPK file for gates OUtput. This file can also contain a total projection of
the matrix (constructed with the usual GY MILDO command) or another SPK file with
the total projection can be opened e.g. with the QF command. Use the FIG command
to set a WIN-configuration with at least 2 graphical windows (e.g. FIG 12 or FIG 14)
and display the total projection or any previous gate on the fist window. Then enter in
cursor mode.

New commands for gates with the cursor:

Z - (Zero) - Clear Buffer B2 and the R marks.

R - (Region) - Marks the peak limits. Op to 10 regions can be selected (the order is
arbitrary, but the two channels of each region should be entered sequentially). All
regions will be added to construct the gate. The pair (or single, if only one of a pair
was entered) of coordinates of a region can be deleted with key D (the one that is
closest to the cursor). U R removes all region marks.

B - (Background) - Marks up to 10 regions for Compton subtraction. The order is
arbitrary, but members of a pair should be entered in sequence. D clears the pair of B
marks closest to the cursor. U B removes all background marks.

J - (Janela/Window) - The gate is constructed automatically as a sequence of the
following MILDO commands:

Z1
Z2
GY 1 RL RH - Where RL , RH are the two values of the peak region.

A12 1. - The Buffer 2 is accumulated with the actual peak gate.
.... - Repeat for all peak - regions
GY 1 B1 B2 - Where B1 B2 are the limits of the lower value of the BKG region (If any).

A12 F - Where F = -SUM (all R - channs.)/SUM(all B channs.)
.... - Repeat for all B regions.

After the J - command is given and these MILDO command are executed the result
(Buffer 2) is displayed in the window above (IDW consecutive) the one where the
graphic cursor is positioned at the moment the J command is entered. You can perform
any valid cursor 1-KEY command in the window where the gate is plotted, including

setting new gates. The only limitation refers to previous (older) displayed gates: If you
e.g. expand or perform any command that implies re-display, the result will refer to
the last gate, since that is what is in Buffer 2.

T - (Totalize) - Similar to J, but Z1 and Z2 are NOT performed before constructing the
gate. In this way, the present gate is accumulated to the previous one.

O - (Output) - After the command you are prompted to enter the new ID number to
store the Buffer 2 on the output file. The channel limits are logged on the screen and
DAMM.LOG after a successful command O.

X - Change the axis where gate is placed. Initially the gate is set in axis 2. Every time
X is entered, gating axis is changed (1,2).

F - (Full) - This is not really a command related with gating, but a new command of the
original cursor (D1) routine. After an expansion, the F - Key will return the display
limits to the original limits of the D - command (entered with the DL - command).

DON’T forget to U R when setting new gates !!!

