Digital Pulse Processing: A new paradigm in nuclear instrumentation

Roberto V. Ribas – DFN-IFUSP

Nuclear Instrumentation Modules - NIM

Spectroscopic Amplifier

Constant Fraction Discriminator

Multichannel Analyzer (1970)

Saci-Pererê

1960's – Complexity of traditional systems comes to its limits...

XXXII RTFNB - Lindoia, 2009

GASP - 1990

$CAMAC + FERA + \dots$

AGATA Prototypes (Calin Ur - Guarujá, 2005)

(Berta Rubio's talk)

Symmetric detectors

- 3 ordered, Italy, Germany
- 3 delivered
- Acceptance tests in Koln
- 3 work very well

Encapsulation 0.8 mm Al walls 0.4 mm spacing

MINIBALL-style cryostat used for acceptance tests "standard" preamplifiers XXXII RTFNB - Lindoia, 2009

Benefits of the γ -ray tracking (C. Ur)

Data simulation by E.Farnea and F.Recchia (INFN Padova)

XXXII RTFNB - Lindoia, 2009

DIGITAL SIGNAL PROCESSING

SUCCESSIVE APPROXIMATION ADC EOC Clock SAR $D_{\text{N-l}}$ D_{N-2} D_0 $\mathbf{V}_{\mathrm{REF}}$ DAC Comparator V_{IN} S/H XXXII RTFNB - Lindoia, 2009

FLASH ADC

FPGA - Field Programmable Gate Array (I.Y. Lee)

-	1.000		100	1.00	-	and Capital I	0.00		1	and it was a	-	10.0		1.000	·	1.000	-			1.77.		1.00	-	-		12.00		-	-	-	-			1.10	100.0		-	100 C	1000	2 mg - 1	-
문문		문문		밀	8		-		25	22		÷.	- 10				- 14		1	4			22	17	-	er.	1			-	×.,		2					-			
9L.			83	2	Ξ.		6 6	슻		22	F -	÷-	- 14		÷ -	-		2		P	24	100		Ŀ,				÷ -	-	1-	-11		1	-		1	÷.,				
		32	1		ε.						1	6.	-	100	2.2			1.25			2.14	inge-		és, e	-	1213		2.4	-	10			ä -	140	4.4		·		ê. 2	-	1
48				11	а,				22	89	Ξ.	-	-3	Ξ.	-	-	- 1	-		Ξ.	-			*	-	PP	14	39		5.S			2.5		-10	ensi i	-	22	-		
and had				÷	÷.			98				٦.				12	21				÷.,				-	1	-	4								P 9.			2		
ino:	i Ton	āā		16	ā	1	ice i	1				5	185					-		÷.,	1	1.		6.	1		-	1.2	Ξ.		- 23	- 18	÷.				1	1			
100	ioi	oro	01	50	Ø١	-1-1	101	10		- (*)	61		1				• •	- 1			-						- 37	2. 8	-	11.	. *		£		14					4.50	
1				22	91			T		1.2	E	-			••		•••					1	÷	***		25	-	-	•		-	4				12	1	100	-		
1		1						-16				5	12	1		-		-	2.2		100	1	-						2	51					-	-	1				
	24	÷	-	eri	а		95	12	-		÷.,	2			2-		-	100			71.	-	2	20	-	-		42	8	56	-				-				-1+	-	- 91
5.5	6	12		10			9-°					1.0	- 10	÷			-	-		e 1	213	198.	÷ ÷	4	2.2	÷.	6.8	물로		12			- 1		2.0	12	14	64			1
10	÷	40	Ot	10		- 1-	-			10			15					1.5	۴.		. 6-		ς Ξ			73	12		-					1	-		2	12	2.2	-211	157
	10	are.		IC.		26		1.1	27				22		••		2.		•		-14						*	2.2	٠.	• •		10	1	12		18	2				
42	5.2	100							- 1				•••		2.		11				1.					٠.					-	10	2.7			1	2.	- 14	11		
1		218	5				-	12	- 1		5	-	12		2.7	-					. 1	5	1		1.2	2		- 1	1	20	-	- 5	-			-	2	4	2.1	-	
4		-	94		=	- 1.3	ы,	1						-						-	-	e .	í.,				1		1	44	1							-	4		- 34
		210			=		-		2.0	-	-				•	1.00				-	-	e.	- 1	-						12	= 1		-		÷ -		2.	-			
and the	10	21	1		21	2'3	-	+	51		121			*	2.1	-	2 4	14	а.		212	12	8.9	4	14	-	-	1				10		12	0.2		61	1	2	-	-
-		100		-			200				4			4		44	- 27	1.		4	10							-				12	-	-			2 :	5.2			
-		20			Ξ.	2	2			1.5					1	1				1	1			-		Ξ.		-				1.2	-		-			18.			3
-		1							5						-	-	-	- 44		-	4.4									-	-					-	21	1.1			
	-	*									2									2	120	-									-		-			in.		-	*		1.1
0.0		1.4														+				-		÷				1		5	-		*	• =			. 3	1	1	1	1		1.2
10.4			3												* -					11+							5 2.	* *			-									10	1
£.									-		1	1		1															-		- 1	+	1			-		-	1		
		100																	-		1																1	3			-
*	*																																							-	10
							-																		-				-		-								-		
27		-	-		1	•	* *						2.7															2 -			\overline{T}		-		2		* *			2.3	
			*	e es	18.			2				e e	-	14						6 ¹ 6		ele re	11.49	÷	-	. 101		in e	1	7	1	F.	1		1	1					10
	-			-																	2.7					5 -	-						2								1
8	1																									-							*				2		1.4	Ø.,	- 3
																														18	-						÷.	- 10			
	1	÷.,																										-	-	-			-								
																-						-		100				2				-	-		-					-	
	-						-																								-				- 34		-	0			1.5
F -	1	ate.		e.															1912		1											1		-41	111					19.18	1.14
-		-	-																										-	1			-	-					s _	1.21	2 4
÷			Ξ.																											-						2.		1	2.5	-	2.8
-		4.4	1	-																-						4					-	-		-	-	-	4	-	2		
44	-		-		-						-	-	-			-		- 17	* 1	łŦ	121	ŧ ŧ	3 8	*	8.8	*	6.9	1.0		# ÷	12.00		15.1			190				4.1	6.4
۵.	-		2																		1											100		1	-	-	-			-	
112	-		÷.														-														-		- 4		231			-	-		
10	1	1.9		6												-					22										-84	-	1		-			4	- 1	-	1
-	1	. 5	2.	-										1		•	-				1							-			45.	•	- 14	• •	-	2	1	+ -	•••		
	-	86	-		2			1					1.4				•					-													1	-	-				
		200	2.5	1.14	1				* 1		-			-	-				1	-		P.	1								1				-			-			
		2.2	-	1	-	9 x	-			0.00			17 P	18	19		5			11	÷.							•			1	100	23	12	51	1	5.5		211	-	1.7
		-	23	190	5		-					20		12		불			1-5	1 m	- 10			1. T							Τ.	100		-	21	1	4	+ + +		-	1
		7	-	141	-						8 - A	100	11								28							140		1.18		8. A		-		10.1					-
212		• -	+	198	-	1.5							-		6	5	-		1			-						2		-	-	1	-			1.		-	2,-	14.7	121
142		ale.	-	6	1	- 2		-	-	- 2	-	1	-	1									-	÷.	1	de.		. i		1.10	40	100	-		-			1		-	201
				1	24	6 B.					- 14	-		1	3.5	10	254		1	-				-				-	-	- 10		•				**			2	201	-
*	1	-	1			inere i	-	-		-		1			-				-	10		-				2		Ξ.,			14	1	10.1	10	1.5	1.77		ise -	3.4	- 3	-
	-	THE OWNER						1	3.		100	i.	-				-		5.	-						i.							-	-	-		-		1	-	-
100	-		0.0		and a	100	-	6.2	124	11.	1	50		100	100	14	-	102	280	1.0	- 2	1	1	2	199.00	100		100	-	-	14.14	1	and a state	12	-32	194	100	100	- CL	100	-

(www.dspguide.com/)

 $y(i) = a_0 * x(i) + a_1 * x(i-1) + a_2 * x(i-2) + b_1 * y(i-1) + b_2 * y(i-2)$

FIGURE 19-2

Single pole low-pass filter. Digital recursive filters can mimic analog filters composed of resistors and capacitors. As shown in this example, a single pole low-pass recursive filter smoothes the edge of a step input, just as an electronic RC filter.

Spectroscopic Amplifier

DPP for typical NIM modules functions

- □ Leading Edge Discrimination:
- •y[n]=x[n]-x[n-k](differentiation)
- •y[n]= (x[n]+x[n-2]) + x[n-1] < 1(Gaussian filtering)
- •Threshold comparison \rightarrow LED time
- **Constant Fraction Discrimination:**
- •y[n]=x[n]-x[n-k](differentiation)
- •y[n]= (x[n]+x[n-2]) + x[n-1] < <1(Gaussian filtering)
- •y[n]=x[n-k]<<a-x[n](constant fraction)</pre>
- •Zero crossing comparison \rightarrow CFD time
- Trapezoidal filter and energy determination:
- •y[n]=y[n-1]+ ((x[n]+x[n-2m-k]))–(x[n-m]+x[n-m-k]))

J.T. Anderson et al. IEEE N25, 6 p1751 (2007)

Pre-amp pulse

Trapezoidal Filter

Moving Window Deconvolution

Figure 3: MWD-ADC block diagram (a), MWD process diagram (b) and cascade of moving deconvolvers (c).

Georgiev&Gast IEEE N40,4 p770 (1993)

Constant Fraction Discriminator

HDL – Verilog

module oscillo(clk, RxD, TxD, clk_flash, data_flash); input clk; input RxD; output TxD;

input clk_flash; input [7:0] data_flash; wire [7:0] RxD_data; async_receiver async_rxd(.clk(clk), .RxD(RxD), .RxD_data_ready(RxD_data_ready), .RxD_data(RxD_data));

reg startAcquisition; wire AcquisitionStarted;

always @(posedge clk)
if(~startAcquisition)
 startAcquisition <= RxD_data_ready;
else
if(AcquisitionStarted)
 startAcquisition <= 0;</pre>

reg startAcquisition1; always @(posedge clk_flash) startAcquisition1 <=
startAcquisition ;</pre>

Development & Evaluation

- FPGA + USB interface evaluation boards from www.knjn.com (Saxo, Xilo)
- 8 bit flash ADCs from KNJN
- 4-12 bit flash ADC evaluation boards from Analog Devices (from MARS)

A simple MCA

- Using the evaluation modules we have.
- With 8 bits ADC not really useful for real measurements
- Simple software developed implements all DPP, histogramming, display and an "oscilloscope" to inspect the signal at various points in the DPP chain.
- May be used in experimental courses at our Institute (e.g. Compton scattering experiment)

What Have to be Done

- Learn better to program in Verilog
 Introduce all DPP in the FPGA
- Develop a trigger system to control 4
 12 bits ADCs. This could be a simple system to be used in our lab.
- Develop a board with USB interface, larger FPGA, capable to interface more ADCs.

4 Ge Detectors Digitizing System

1 Double NIM-size module Replacing all electronics (1 full NIM Bin) and DAC System (Camac Crate)

Who are we?

- RVR DPP algorithms (on the PC) and acquisition software
- Felipe L. Borges (electronic engineering undergraduate student)– FPGA programming

Conclusions

- DPP will be wide spread in the near future. Costs are much smaller than traditional electronics (~US\$500/channel)
- Even if commercial systems are now available, they are (now) to much specific. We certainly will need to build our own.
- Digital electronics at high frequency is not simple, but way more easy to construct than the analogical equivalents.

Data Acquisition System SADE – Lab. Pelletron, 1972

