Interfacing CAMAC Instrumentation to the USB

Roberto V. Ribas – University of São Paulo

CAMAC & R.V. RIBAS

- Camac appeared in the early 70's.
- I graduated in the early 70's.
- We are both getting old.
- But both of us are still useful!

1960´s - Before CAMAC: Complexity of traditional systems comes to its limits...

Computer Automated Measurement And Control ~ 1970

Honeywell DDP-516 (66-72)

30 COMPUTER CONTROL DIVISION

Computers Changed a Lot...

- In 1970, computer technology did not permit to include processors in the Camac crate or modules.
- Interfacing a Camac crate to computers is no longer done with the definitions of the IEEE-Standards (Branch/Serial Drivers).
- Most newer available interfaces are also becoming outdated (ISA, PCI).
- Evolution of OS also brings difficulties with software drivers.

New Way: Digital Pulse Processing

FPGA + Flash ADCs

Digital Equivalent - NIM Modules

- Leading Edge Discrimination:
- •y[n]=x[n]-x[n-k](differentiation)
- •y[n] = (x[n]+x[n-2]) + x[n-1] < 1(Gaussian filtering)
- •Threshold comparison \rightarrow LED time
- Constant Fraction Discrimination:
- •y[n]=x[n]-x[n-k](differentiation)
- •y[n] = (x[n]+x[n-2]) + x[n-1] < 1(Gaussian filtering)
- •y[n]=x[n-k]<<a-x[n](constant fraction)</pre>
- •Zero crossing comparison \rightarrow CFD time
- **Trapezoidal filter and energy determination:**
- •y[n]=y[n-1]+((x[n]+x[n-2m-k]))-(x[n-m]+x[n-m-k]))

(programming FPGA: Verilog/VHDL)

J.T. Anderson et al. IEEE N25, 6 p1751 (2007)

Reviving old Camac Modules

- Interface to the USB (fast, hot-plug).
- Introduce local processing capabilities to handle events and event buffering.
- Dedicate interface to 2-4 Camac modules, without need of heavy, 25 units Camac Crates.
- Acquisition software similar to that we are still using.

Cypress-FX2 Microcontroller with USB interface

- USB 2.0 interface:
 - Freeware drivers and basic software available for Linux (cycfx2prog by Wolfgang Wieser).
 - All USB endpoint fifo buffers.
- Includes a 8051 microcontroller:
 - C programable (sdcc), 16kB RAM.
 - 5x8 bits IO registers.

Dedicate interface for 2/4 Camac Modules

User's Event Handler

// event definition
dd[nn++]=0x01;
dd[nn++]=0x80; //event header - 0x800
rout1(0x00); //read E1 - A=0, F=0
rout1(0x01); //read E2 - A=1, F=0
rout1(0x02); //read E3 - A=2, F=0
delay(10);
rout1(0x00); //read T1
rout1(0x01); //read T2
rout1(0x02); //read T3
dd[nn++]=0xFF;
dd[nn++]=0xFF; //end event - 0xFFFF
af=0xbc; //A=12, F=11 - clear module 1
naf(af,1);
af=0x9c; //A=12 F=9 - clear module 2
naf(af,2);
//end event definition.

Performance

- FX2 loops waiting for LAM.
- NAFs starts about 10 μs after LAM.
- Each NAF + coping data, etc. 4.5 μs.
- Total time for N ADCs (Nx4.5+10) μ s.
- Conversion time:
 - Phillips 7164 (16x4k ADC/TDC/QDC): 7.2 μs
 - Silena 4418 (8x4k ADC/TDC) : 35 μs
 - Ortec 811 (8x2k ADC): 80 μs
 - LeCroy 2228 (8x2k TDC): 100 μs
- System is good for up to:
 - A few k-events/s.
 - Events about 100 bytes long.

Acquisition Software

- *SPM-FX2*
 - SPM = SADE Post-Modernum
 - SADE = DDP-516 time DAC-System
 - SPM = VAX-780 DAC-System
- Concurrent processes
 - Manager: distribute command to the acquisition and sorting modules (semaphores, shared memory, etc.)
 - Acquisition: get event buffers from Camac front-end, write to disk and send to sorting.
 - Sorting: histograms in a shared memory space that can be opened by external display and analysis program.

Acquisition Control and Histogramming

Standard Crate Controler

Conclusions

- Camac instrumentation have a much longer lifetime then computers and the original interfaces.
- A versatile Data Acquisition system was developed to revive these modules.
- For the 2/4 modules system, power supply is not available commercially. Also is not easy:

To find the Camac edge connectors.

PCB costs the same for one as for a doze.

If you need one system like that, please contact me.

THANK YOU! GRACIAS!

RR	RR	II	BB BB	ΑА	AA	SS P		
RRRRRRRR		II	88888888	AA	AA	SSSSSS	11	
RRE	RRRRR	II	88888888	AA	AA	SSSSSS	F	
RR	RR	II	BB BB	AAAAA	AAAAA	SS	×	
RR	RR	II	BB BB	AAAAA	AAAAA	SS	8	and the second
RR	RR	II	BB BB	AA	AA	55	-	d
RR	RR	II	BB BB	AA	AA	SS		
RR	RR	IIIIII	BBBBBBBB	AA	AA	22222222		
RR	RR	IIIIII	BBBBBBBB	AA	AA	22222222		
0.3								

9100 120 X²

10

8

CRSTELL

Computing with the slide rule...

IBM 360/44

IBM 360/44 2kB RAM Module

IX LASNPA - Quito-2011

The small ferrite rings

WANG Programmable Calc.

Data Acquisition System SADE - Lab. Pelletron, 1972

